Skip to main content
Log in

Paired Bernoulli Circular Spreading: Attaining the BER Lower Bound in a CSK Setting

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript


This paper is concerned with the Paired Bernoulli Circular Spreading (PBCS), a way of generating optimal spreading for the single-user coherent chaos shift-keying (CSK) system. PBCS is optimal spreading in the sense that it attains the Bit Error Rate (BER) lower bound of the system, therefore it has a potential engineering impact on the choice of signal carrier in CSK communications. PBCS optimality is justified theoretically and is further demonstrated through BER simulations. The statistical properties of PBCS are of interest too, as it is an invariant stochastic process with a mixed joint density which allows to sample infinitely many points from a circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. M. Hasler, T. Schimming, Optimal and suboptimal chaos receivers. Proc. IEEE 90(5), 733–746 (2002)

    Article  Google Scholar 

  2. G. Kaddoum, P. Charge, D. Roviras, A generalized methodology for bit-error-rate prediction in correlation-based communication schemes using chaos. IEEE Commun. Lett. 13(8), 567–569 (2009). doi:10.1007/s00034-012-9455-5

    Article  Google Scholar 

  3. G. Kaddoum, P. Chargé, D. Roviras, D. Fournier-Prunaret, A methodology for bit error rate prediction in chaos-based communication systems. Circuits Syst. Signal Process. 28, 925–944 (2009). doi:10.1007/s00034-009-9124-5

    Article  MATH  Google Scholar 

  4. G. Kolumbán, Theoretical noise performance of correlator-based chaotic communications schemes. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(12), 1692–1701 (2000)

    Article  MATH  Google Scholar 

  5. F.C.M. Lau, C.K. Tse, Optimum correlator-type receiver design for CSK communication systems. Int. J. Bifurc. Chaos 12(5), 1029–1038 (2002)

    Article  Google Scholar 

  6. F.C.M. Lau, C.K. Tse, Approximate-optimal detector for chaos communication systems. Int. J. Bifurc. Chaos 13(5), 1329–1335 (2003)

    Article  MATH  Google Scholar 

  7. A.J. Lawrance, N. Balakrishna, Statistical aspects of chaotic maps with negative dependence in a communications setting. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63(4), 843–853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.J. Lawrance, G. Ohama, Exact calculation of bit error rates in communication systems with chaotic modulation. IEEE Trans. Circuits Syst. 50(11), 1391–1400 (2003)

    Article  MathSciNet  Google Scholar 

  9. A.J. Lawrance, G. Ohama, Bit error probability and bit outage rate in chaos communication. Circuits Syst. Signal Process. 24(5), 519–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.J. Lawrance, T. Papamarkou, Higher order dependency of chaotic maps, in 2006 International Symposium on Nonlinear Theory and its Applications (NOLTA) (IEICE, Bologna, 2006), pp. 695–698.

    Google Scholar 

  11. A.J. Lawrance, J. Yao, Likelihood-based demodulation in multi-user chaos shift keying communication. Circuits Syst. Signal Process. 27(6), 847–864 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Papamarkou, Two aspects of optimum CSK communication: spreading and decoding, in Chaos 2009, The 2nd Chaotic Modeling and Simulation International Conference, Chania, Greece (2009)

    Google Scholar 

  13. T. Papamarkou, A.J. Lawrance, On Monte Carlo maximum likelihood decoding in CSK communications. Submitted for journal publication

  14. T. Papamarkou, A.J. Lawrance, Optimal spreading sequences for chaos-based communication systems, in 2007 International Symposium on Nonlinear Theory and its Applications (NOLTA) (IEICE, Vancouver, 2007), pp. 208–211

    Google Scholar 

  15. J. Yao, Optimal chaos shift keying communications with correlation decoding, in Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS, vol. 4 (2004), pp. 593–596

    Google Scholar 

  16. J. Yao, A.J. Lawrance, Bit error rate calculation for multi-user coherent chaos-shift-keying communication systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A(9), 2280–2291 (2004)

    Google Scholar 

  17. J. Yao, A.J. Lawrance, Approximate optimal demodulation for multi-user binary coherent chaos-shift-keying communication systems, in ISCAS, vol. 3 (2005), pp. 2052–2055

    Google Scholar 

  18. J. Yao, A.J. Lawrance, Performance analysis and optimization of multi-user differential chaos-shift keying communication systems. IEEE Trans. Circuits Syst. 53(9), 2075–2091 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. J. Lawrance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papamarkou, T., Lawrance, A.J. Paired Bernoulli Circular Spreading: Attaining the BER Lower Bound in a CSK Setting. Circuits Syst Signal Process 32, 143–166 (2013).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: