Skip to main content
Log in

DLPA: Discrepant Low PDP 8-Bit Adder

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new 8-bit adder circuit, called discrepant low PDP 8-bit adder (DLPA) based on three new full adder cells, which have been designed based on requirements of different positions in each 8-bit adder circuit. In order to design the full adder cells, a new and general method has been proposed aiming to achieve full-swing output and low number of transistors. The proposed adder along with several state-of-the-art adders from the literature have been extensively analyzed and compared together. The results revealed that the power-delay product of DLPA is almost more than 20 % less than that of other compared circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Abid, H. El-Razouk, D.A. El-Dib, Low power multipliers based on new hybrid full adders. Microelectron. J. 39(12), 1509–1515 (2008)

    Article  Google Scholar 

  2. M. Alioto, G.D. Cataldo, G. Palumbo, Mixed full adder topologies for high-performance low-power arithmetic circuits. Microelectron. J. 38, 130–139 (2007)

    Article  Google Scholar 

  3. H.T. Bui, Y. Wang, Y. Jiang, Design and analysis of low-power 10-transistor full adders using novel XOR–XNOR gates. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 49(1), 25–30 (2002)

    Article  Google Scholar 

  4. C. Chip-Hong, G. Jiangmin, Z. Mingyan, A review of 0.18-μm full adder performances for tree structured arithmetic circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(6), 686–695 (2005)

    Article  Google Scholar 

  5. Y. Egami, Theoretical study on electron transport through graphene strip with defects. J. Comput. Theor. Nanosci. 6(2009), 2662–2667 (2009)

    Article  Google Scholar 

  6. V. Foroutan, K. Navi, M. Haghparast, A new low power dynamic full adder cell based on majority function. World Appl. Sci. J. 4(1), 133–141 (2008)

    Google Scholar 

  7. M.H. Ghadiry, M. Nadisenejani, M. Miryahyaei, A new full swing full adder based on a new logic approach. World Appl. Sci. J. 11(7), 808–811 (2010)

    Google Scholar 

  8. M.H. Ghadiry, A.K. A’Ain, M. Nadisenejani, Design and analysis of a novel low PDP full adder cell. J. Circuits Syst. Comput. 20(3), 439–445 (2011)

    Article  MATH  Google Scholar 

  9. M.H. Ghadiry, Asrulnizam Abd Manaf, M.T. Ahmadi, H. Sadeghi, M. Nadisenejani, Design and analysis of a new carbon nanotube full adder cell. J. Nanomater. 2011(2011), 906237 (2011)

    Google Scholar 

  10. S.A.K. Goel, M.A. Bayoumi, Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(12), 1309–1321 (2006)

    Article  Google Scholar 

  11. W. Hang-Sheng, Z. Xinping, P. Li-Shiuan, M. Sharad, Orion: a power-performance simulator for interconnection networks, in ACM/IEEE International Symposium on Microarchitecture (IEEE Press, New York, 2002)

    Google Scholar 

  12. J.-F. Lin, Y.-T. Hwang, M.-H. Sheu, C.-C. Ho, A novel high-speed and energy efficient 10-transistor full adder design. IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 1050–1059 (2007)

    Article  Google Scholar 

  13. M. Nadi, M.H. Ghadiry, M.K. Dermany, The effect of number of virtual channel on NOC EDP. J. Appl. Math. Inform. 2010(1), 539–551 (2010)

    Google Scholar 

  14. V. Navarro-Botello, J.A. Montiel-Nelson, S. Nooshabadi, High performance low power CMOS dynamic logic for arithmetic circuits. Microelectron. J. 38(1), 482–488 (2007)

    Article  Google Scholar 

  15. K. Navi, V. Foroutan, B. Mazloomnejad, S. Bahrololoumi, O. Hashempour, M. Haghparast, A six transistors full adder. World Appl. Sci. J. 4(1), 142–149 (2008)

    Google Scholar 

  16. K. Navi, N. Khanadel, The design of a high-performance full adder cell by combining common digital gates and majority function. Eur. J. Sci. Res. 23, 626–638 (2008)

    Google Scholar 

  17. K. Navi, M.M.V. Foroutan, S. Timarchi, O. Kavei, A novel low power full-adder cell for low voltage. Integration 42(4), 457–467 (2009)

    Google Scholar 

  18. K. Navi, M. Maeen, V. Foroutan, S. Timarchi, O. Kavehei, A novel low-power full-adder cell for low voltage. Integration 42(4), 457–467 (2009)

    Google Scholar 

  19. K. Navi, M.H. Moaiyeri, R.F. Mirzaee, O. Hashemipour, B.M. Nezhad, Two new low-power full adders based on majority-not gates. Microelectron. J. 40(1), 126–130 (2009)

    Article  Google Scholar 

  20. K. Navi, M. Saatchi, O. Daei, A high-speed hybrid full adder. Eur. J. Sci. Res. 26, 29–33 (2009)

    Google Scholar 

  21. R.M.P. Pedram (ed.), Low Power Design Methodologies (Kluwer Academic, Norwell, 1996)

    Google Scholar 

  22. D.A. Pucknell, K. Eshraghian, Basic VLSI Design, 3rd edn. (Prentice-Hall, Englewood Cliffs, 1994)

    Google Scholar 

  23. M.N. Senejani, M.H. Ghadiry, M. Miryahyaei, Low dynamic power high performance full adder, in Proc. of ICFCC (2009), pp. 482–486

    Google Scholar 

  24. R. Shalem, E. John, L.K. John, A novel low-power energy recovery full adder cell, in Proc. Great Lakes Symp. VLSI (1999), pp. 380–383

    Chapter  Google Scholar 

  25. A.M. Shams, M.A. Bayoumi, A novel high-performance CMOS 1-bit full-adder cell. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 47(5), 478–481 (2000)

    Article  Google Scholar 

  26. A.M. Shams, T.K. Darwish, M.A. Bayoumi, Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10(1), 20–29 (2002)

    Article  Google Scholar 

  27. A.M. Shams, G.M. Zhang, A review of 0.18 μm full adder performances for tree structure arithmetic circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(6), 686–695 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdiar Ghadiry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghadiry, M., Nadi, M. & A’Ain, A.K. DLPA: Discrepant Low PDP 8-Bit Adder. Circuits Syst Signal Process 32, 1–14 (2013). https://doi.org/10.1007/s00034-012-9438-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9438-6

Keywords

Navigation