Skip to main content
Log in

Time-Frequency Atom Decomposition with Quantum-Inspired Evolutionary Algorithms

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Time-frequency atom decomposition (TFAD) provides a flexible representation for non-stationary signals, but the extremely high computational effort greatly blocks its practical applications. Quantum-inspired evolutionary algorithms (QEA) are efficient optimization methods with strong search capability and rapid convergence. This paper proposes the application of a modified variant of QEA to the TFAD problem. The problem on TFAD with evolutionary algorithms is formulated. By using gray coding, elite groups, and an appropriate termination criterion, the modified QEA is developed to search the suboptimal time-frequency atoms from a very large and redundant time-frequency dictionary. Also, this paper discusses the reduction of the computational time in terms of parameter setting, and presents an application example of radar emitter signals. Extensive experiments show the effectiveness and practicability of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Akbarzadeh-T, A.R. Khorsand, Evolutionary quantum algorithms for structural design, in Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 4 (2005), pp. 3077–3082

  2. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404, 247–255 (2000)

    Article  Google Scholar 

  3. S.S. Chen, Basis pursuit, Ph.D. thesis, Stanford University, November 1995

  4. R.R. Coifman, M.V. Wickerhauser, Entropy based methods for best basis selection. IEEE Trans. Inf. Theory 38, 719–746 (1992)

    Article  Google Scholar 

  5. P. Czerepinski, C. Davies, N. Canagarajah, D. Bull, Matching pursuits video coding: dictionaries and fast implementation. IEEE Trans. Circuits Syst. Video Technol. 10, 1103–1115 (2000)

    Article  Google Scholar 

  6. G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximation. J. Constr. Approx. 13, 57–98 (1997)

    MATH  MathSciNet  Google Scholar 

  7. A.R. Ferreira da Silva, Evolutionary-based methods for adaptive signal representation. Signal Process. 81, 927–944 (2001)

    Article  Google Scholar 

  8. A.R. Ferreira da Silva, Atomic decomposition with evolutionary pursuit. Dig. Signal Process. 13, 317–337 (2003)

    Article  MathSciNet  Google Scholar 

  9. A.R. Ferreira da Silva, Approximations with evolutionary pursuit. Signal Process. 83, 465–481 (2003)

    Article  MATH  Google Scholar 

  10. R.M. Figueras i Ventura, P. Vandergheynst, Matching pursuit through genetic algorithms. LTS-EPFL Tech. Report, 2001, pp. 1–14

  11. R. Gribonval, Fast matching pursuit with a multiscale dictionary of Gaussian chirps. IEEE Trans. Signal Process. 49, 994–1001 (2001)

    Article  MathSciNet  Google Scholar 

  12. R. Gribonval, E. Bacry, Harmonic decomposition of audio signals with matching pursuit. IEEE Trans. Signal Process. 51, 101–111 (2003)

    Article  MathSciNet  Google Scholar 

  13. L.K. Grover, Quantum computation, in Proc. of the 12th International Conference on VLSI Design (1999), pp. 548–553

  14. K.H. Han, J.H. Kim, Genetic quantum algorithm and its application to combinatorial optimization problem, in Proc. of the 2000 IEEE Congress on Evolutionary Computation, vol. 2 (2000), pp. 1354–1360

  15. K.H. Han, J.H. Kim, Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6, 580–593 (2002)

    Article  Google Scholar 

  16. K.H. Han, J.H. Kim, Quantum-inspired evolutionary algorithms with a new termination criterion, H ε gate, and two-phase scheme. IEEE Trans. Evol. Comput. 8, 156–169 (2004)

    Article  Google Scholar 

  17. T. Hey, Quantum computing: an introduction. Comput. Control Eng. J. 10, 105–112 (1999)

    Article  Google Scholar 

  18. J.S. Jang, K.H. Han, J.H. Kim, Face detection using quantum-inspired evolutionary algorithm, in Proc. of the 2004 Congress on Evolutionary Computation, vol. 2 (2004), pp. 2100–2106

  19. B. Jeon, S. Oh, Fast matching pursuit with vector norm comparison. IEEE Trans. Circuits Syst. Video Technol. 13, 338–342 (2003)

    Article  Google Scholar 

  20. A.R. Khorsand, M.R. Akbarzadeh-T, Quantum gate optimization in a meta-level genetic quantum algorithm, in Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 4 (2005), pp. 3055–3062

  21. A.R. Khorsand, M.R. Akbarzadeh-T, Genetic quantum algorithm for voltage and pattern design of piezoelectric actuator, in Proc. of IEEE Congress on Evolutionary Computation (2006), pp. 2593–2600

  22. K.H. Kim, J.Y. Hwang, K.H. Han, J.H. Kim, K.H. Park, A quantum inspired evolutionary computing algorithm for disk allocation method. IEICE Trans. Inf. Syst. vol. E86-D, 645–649 (2003)

    Google Scholar 

  23. Y. Kim, J.H. Kim, K.H. Han, Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems, in Proc. of IEEE Congress on Evolutionary Computation (2006), pp. 2601–2606

  24. Y. Li, Y.N. Zhang, R.C. Zhao, L.C. Jiao, An edge detector based on parallel quantum-inspired evolutionary algorithm, in Proc. of the 3rd Int. Conf. on Machine Learning and Cybernetics (2004), pp. 4062–4066

  25. Q.S. Liu, Q. Wang, L.N. Wu, Size of the dictionary in matching pursuit algorithm. IEEE Trans. Signal Process. 52(12), 3403–3408 (2004)

    Article  MathSciNet  Google Scholar 

  26. Q.S. Liu, Q. Wang, L.N. Wu, Improvement of encoder for matching pursuit-based video coding. Electron. Lett. 36(6), 548–549 (2000)

    Article  Google Scholar 

  27. G. Lopez-Risueno, J. Grajal, Unknown signal detection via atomic decomposition, in Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (2001), pp. 174–177

  28. G. Lopez-Risueno, J. Grajal, O. Yeste-Ojeda, Atomic decomposition-based radar complex signal interception. IEE Proc. Radar Sonar Navig. 150(4), 323–331 (2003)

    Article  Google Scholar 

  29. S.G. Mallat, Z.F. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  30. K.E. Mathias, L.D. Whitley, Transforming the search space with gray coding, in Proceedings of the First IEEE Conference on Evolutionary Computation (1994), pp. 513–518

  31. S. Meshoul, K. Mahdi, M. Batouche, A quantum inspired evolutionary framework for multi-objective optimization, in Proc. of 12th Portuguese Conference on Artificial Intelligence. Lecture Notes in Artificial Intelligence, vol. 3808 (Springer, Berlin, 2005), pp. 190–201

    Google Scholar 

  32. M. Moore, A. Narayanan, Quantum-inspired computing. Department of Computer Science, University of Exeter, Exeter, UK, 1995

  33. A. Narayanan, Quantum computing for beginners, in Proc. of the 1999 Congress on Evolutionary Computation (1999), pp. 2231–2238

  34. A. Narayanan, M. Moore, Quantum-inspired genetic algorithm, in Proc. of IEEE International Conference on Evolutionary Computation (1996), pp. 61–66

  35. R. Neff, A. Zakhor, Very low bit rate video coding based on matching pursuit. IEEE Trans. Circuits Syst. Video Technol. 7, 158–171 (1997)

    Article  Google Scholar 

  36. S. Qian, D. Chen, Signal representation using adaptive normalized Gaussian functions. Signal Process. 36(1), 1–11 (1994)

    Article  MATH  Google Scholar 

  37. D. Stefanoiu, F. Ionescu, A genetic matching pursuit algorithm, in Proceedings of 7th International Symposium on Signal Processing and Its Applications (2003), pp. 577–580

  38. D. Stefanoiu, F. Ionescu, A time-frequency-scale approach to fractal data denoising and compression, in Proceedings of the First South-East European Symposium on Interdisciplinary Approaches in Fractal Analysis (2003), pp. 79–84

  39. D. Stefanoiu, F. Ionescu, Faults diagnosis through genetic matching pursuit, in Proceedings of 7th International Conference on Knowledge-Based Intelligent Information and Engineering Systems. Lecture Notes in Computer Science, vol. 2773 (Springer, Berlin, 2003), pp. 733–740

    Google Scholar 

  40. H. Talbi, M. Batouche, A. Draa, A quantum-inspired genetic algorithm for multi-source affine image registration, in Proceedings of International Conference on Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 3211 (Springer, Berlin, 2004), pp. 147–154

    Google Scholar 

  41. M.P. Tcheou, L. Lovisolo, E.A.B. da Silva, M.A.M. Rodrigues, P.S.R. Diniz, Optimum rate-distortion dictionary selection for compression of atomic decompositions of electric disturbance signals. IEEE Trans. Signal Process. Lett. 14(2), 81–84 (2007)

    Article  Google Scholar 

  42. J. Vesin, Efficient implementation of matching pursuit using a genetic algorithm in the continuous space, in Proceedings of 10th European Signal Processing Conference (2000), pp. 2–5

  43. H.L. Wang, O.K. Ersoy, Parallel gray code optimization for high dimensional problems, in Proceedings of the Sixth International Conference on Computational Intelligence and Multimedia Applications (2005), pp. 1–6

  44. Website: http://www-stat.stanford.edu/~wavelab/

  45. D. Whitley, S. Rana, R. Heckendorn, Representation issues in neighborhood search and evolutionary algorithms, in Genetic Algorithms and Computer Science, ed. by D. Quagliarelli et al. (Wiley, New York, 1997)

    Google Scholar 

  46. G.X. Zhang, L.Z. Hu, W.D. Jin, Resemblance coefficient and a quantum genetic algorithm for feature selection, in Proceedings of the 7th International Conference on Discovery Science. Lecture Notes in Artificial Intelligence, vol. 3245 (Springer, Berlin, 2004), pp. 155–168

    Google Scholar 

  47. G.X. Zhang, W.D. Jin, L.Z. Hu, A novel parallel quantum genetic algorithm, in Proceedings of the 4th Int. Conf. on Parallel and Distributed Computing, Applications and Technologies (2003), pp. 693–697

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge-Xiang Zhang.

Additional information

This work is supported by the National Natural Science Foundation of China grants 60702026, the Scientific and Technological Funds for Young Scientists of Sichuan grants 09ZQ026-040, and the Open Research Fund of Key Laboratory of Sichuan, Xihua University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GX. Time-Frequency Atom Decomposition with Quantum-Inspired Evolutionary Algorithms. Circuits Syst Signal Process 29, 209–233 (2010). https://doi.org/10.1007/s00034-009-9142-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-009-9142-3

Navigation