Skip to main content
Log in

Fuzzy Feedback Linearization Control for MIMO Nonlinear System and Its Application to Full-Vehicle Suspension System

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The paper presents a novel fuzzy feedback linearization control of nonlinear multi-input multi-output (MIMO) systems for the tracking and almost disturbance decoupling (ADD) performances based on the fuzzy logic control (FLC). The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system is valid for any initial condition and bounded tracking signal with the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. As soon as the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control immediately is applied via a human expert’s knowledge to improve the convergence rate. One example, which cannot be solved by the previous paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by the proposed approach. In order to demonstrate the applicability, this paper has investigated a full-vehicle suspension system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alleyne, A systematic approach to the control of electrohydraulic servosystems, in Proceedings of the American Control Conference, Philadelphia, PA (1998), pp. 833–837

  2. J.A. Ball, J.W. Helton, M.L. Walker, H control for nonlinear systems with output feedback. IEEE Trans. Automat. Contr. 38, 546–559 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. N.S. Bedrossian, Approximate feedback linearization: the car-pole example, in Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France (1992), pp. 1987–1992

  4. B.S. Chen, C.H. Lee, Y.C. Chang, H tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

  5. M.J. Corless, G. Leitmann, Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Automat. Contr. 26(5), 1139–1144 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Gopalswamy, J.K. Hedrick, Tracking nonlinear nonminimum phase systems using sliding control. Int. J. Control 57, 1141–1158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. M.A. Henson, D.E. Seborg, Critique of exact linearization strategies for process control. J. Process Control 1, 122–139 (1991)

    Article  Google Scholar 

  8. J.W. Hu, J.S. Lin, Nonlinear design of full-vehicle active suspensions with backstepping control scheme, in Proceeding of 2006 CACS Automatic Control Conference, Taiwan (2006)

  9. J. Huang, W.J. Rugh, On a nonlinear multivariable servomechanism problem. Automatica 26, 963–992 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. C.J. Huang, J.S. Lin, Nonlinear backstepping control design of half-car active suspension systems. Int. J. Veh. Des. 33(4), 332–350 (2003)

    Article  MathSciNet  Google Scholar 

  11. S. Ikenaga, F.L. Lewis, J. Campos, L. Davis, Active suspension control of the ground vehicle based on a full-vehicle model, in IEEE Proceeding of 2000 on American Control Conference, vol. 6 (2000), pp. 4019–4024

  12. A. Isidori, Nonlinear Control System (Springer, Berlin, 1989)

    Google Scholar 

  13. A. Isidori, H control via measurement feedback for affine nonlinear systems. Int. J. Robust Nonlinear Control 4(4), 553–574 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Isidori, C.I. Byrnes, Output regulation of nonlinear systems. IEEE Trans. Automat. Contr. 35, 131–140 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Isidori, W. Kang, H control via measurement feedback for general nonlinear systems. IEEE Trans. Automat. Contr. 40, 466–472 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. S.J. Joo, J.H. Seo, Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system. IEEE Trans. Automat. Contr. 5(1), 135–144 (1997)

    Google Scholar 

  17. S. Kawamoto, K. Tada, A. Ishigame, T. Taniguchi, An approach to stability analysis of second order fuzzy systems, in The IEEE International Conference on Fuzzy Systems (1992), pp. 1427–1434

  18. H.K. Khalil, Nonlinear Systems (Prentice-Hall, New York, 1996)

    Google Scholar 

  19. K. Khorasani, P.V. Kokotovic, A corrective feedback design for nonlinear systems with fast actuators. IEEE Trans. Automat. Contr. 31, 67–69 (1986)

    Article  MATH  Google Scholar 

  20. H.K. Lam, F.H.F. Leung, P.K.S. Tam, Fuzzy state feedback controller for nonlinear systems: stability analysis and design, in The IEEE International Conference on Fuzzy Systems, vol. 2 (2002), pp. 677–681

  21. S.Y. Lee, J.I. Lee, I.J. Ha, A new approach to nonlinear autopilot design for bank-to-turn missiles, in Proceedings of the 36th Conference on Decision and Control, San Diego, CA (1997), pp. 4192–4197

  22. R. Marino, P.V. Kokotovic, A geometric approach to nonlinear singularly perturbed systems. Automatica 24, 31–41 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Marino, P. Tomei, Nonlinear output feedback tracking with almost disturbance decoupling. IEEE Trans. Automat. Contr. 44(1), 18–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Marino, W. Respondek, A.J. Van Der Schaft, Almost disturbance decoupling for single-input single-output nonlinear systems. IEEE Trans. Automat. Contr. 34(9), 1013–1017 (1989)

    Article  MATH  Google Scholar 

  25. R.K. Miller, A.N. Michel, Ordinary Differential Equations (Academic Press, San Diego, 1982)

    MATH  Google Scholar 

  26. H. Nijmeijer, A.J. Van Der Schaft, Nonlinear Dynamical Control Systems (Springer, Berlin, 1990)

    MATH  Google Scholar 

  27. H. Peroz, B. Ogunnaike, S. Devasia, Output tracking between operating points for nonlinear processes: Van de Vusse example. IEEE Trans. Control Syst. Technol. 10(4), 611–617 (2002)

    Article  Google Scholar 

  28. C. Qian, W. Lin, Almost disturbance decoupling for a class of high-order nonlinear systems. IEEE Trans. Automat. Contr. 45(6), 1208–1214 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. J.J. Sheen, R.H. Bishop, Adaptive nonlinear control of spacecraft, in Proceedings of the American Control Conference, Baltimore, MD (1998), pp. 2867–2871

  30. J.J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, New York, 1991)

    MATH  Google Scholar 

  31. J.P. Su, C.C. Wang, Fuzzy gain-scheduled integral control and its application to a twin rotor system. Int. J. Fuzzy Syst. 2(3), 205–219 (2000)

    MathSciNet  Google Scholar 

  32. D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes, Dynamic surface control for a class of nonlinear systems. IEEE Trans. Automat. Contr. 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  33. K. Tanaka, M. Sugeno, Stability analysis of fuzzy control systems using Lyapunov’s direct method, in Proc. of NAFIPS’90 (1990), pp. 133–136

  34. K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. K. Tanaka, T. Hori, H.O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)

    Article  Google Scholar 

  36. A.J. Vander Schaft, L 2-gain analysis of nonlinear systems and nonlinear state feedback H control. IEEE Trans. Automat. Contr. 37, 770–784 (1992)

    Article  MathSciNet  Google Scholar 

  37. H.O. Wang, K. Tanaka, M.F. Griffin, An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4, 14–23 (1996)

    Article  Google Scholar 

  38. S. Weiland, J.C. Willems, Almost disturbance decoupling with internal stability. IEEE Trans. Automat. Contr. 34(3), 277–286 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. J.C. Willems, Almost invariant subspace: an approach to high gain feedback design—Part I: almost controlled invariant subspaces. IEEE Trans. Automat. Contr. 26(1), 235–252 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  40. R.R. Yager, D.P. Filev, Essentials of Fuzzy Modeling and Control (Wiley, New York, 1994)

    Google Scholar 

  41. C. Yue, T. Butsuen, J.K. Hedrick, Alternative control for automotive active suspensions. J. Dyn. Syst. Meas. Control 111, 286–291 (1989)

    Article  Google Scholar 

  42. P.P. Yip, J.K. Hedrick, Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Cheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CJ., Li, TH.S. & Chen, CC. Fuzzy Feedback Linearization Control for MIMO Nonlinear System and Its Application to Full-Vehicle Suspension System. Circuits Syst Signal Process 28, 959–991 (2009). https://doi.org/10.1007/s00034-009-9126-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-009-9126-3

Keywords

Navigation