Skip to main content
Log in

Robust Constrained Model Predictive Control Based on Parameter-Dependent Lyapunov Functions

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

Abstract

The problem of robust constrained model predictive control (MPC) of systems with polytopic uncertainties is considered in this paper. New sufficient conditions for the existence of parameter-dependent Lyapunov functions are proposed in terms of linear matrix inequalities (LMIs), which will reduce the conservativeness resulting from using a single Lyapunov function. At each sampling instant, the corresponding parameter-dependent Lyapunov function is an upper bound for a worst-case objective function, which can be minimized using the LMI convex optimization approach. Based on the solution of optimization at each sampling instant, the corresponding state feedback controller is designed, which can guarantee that the resulting closed-loop system is robustly asymptotically stable. In addition, the feedback controller will meet the specifications for systems with input or output constraints, for all admissible time-varying parameter uncertainties. Numerical examples are presented to demonstrate the effectiveness of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, Constrained model predictive control: stability and optimality, Automatica, vol. 36, pp. 789–814, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. V. Kothare, V. Balakrishnan, M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, vol. 32, pp. 1361–1379, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. Z. Wan, M. V. Kothare, An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, vol. 39, pp. 837–846, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Pluymers, J. A. K. Suykens, B. D. Moor, Min-max feedback MPC using a time-varying terminal constraint set and comments on “efficient robust constrained model predictive control with a time-varying terminal constraint set”, Systems & Control Letters, vol. 54, pp. 1143–1148, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. I. Lee, M. Cannon, B. Kouvaritakis, Extended invariance and its use in model predictive control, Automatica, vol. 41, pp. 2163–2169, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. C. Jeong, P. Park, Constrained MPC algorithm for uncertain time-varying systems with state-delay, IEEE Transactions on Automatic Control, vol. 50, no. 2, pp. 257–263, 2005.

    Article  MathSciNet  Google Scholar 

  7. T.  Sato, A.  Inoue, Improvement of tracking performance in self-tuning PID controller based on generalized predictive control, International Journal of Innovative Computing, Information and Control, vol. 2, no. 3, pp. 491–503, 2006.

    Google Scholar 

  8. K.  Kemih, O.  Tekkouk, S.  Filali, Constrained generalised predictive control with estimation by genetic algorithm for a magnetic levitation system, International Journal of Innovative Computing, Information and Control, vol. 2, no. 3, pp. 543–552, 2006.

    Google Scholar 

  9. H. Tuan, P. Apkarian, T. Nguyen, Robust and reduced-order filtering: new LMI-based characterizations and methods, IEEE Transactions on Signal Processing, vol. 19, pp. 2975–2984, 2001.

    Article  Google Scholar 

  10. M. C. de Oliveira, J. Bernussou, J. C. Geromel, A new discrete-time robust stability condition, Systems & Control Letters, vol. 37, pp. 261–265, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. C. Geromel, M. C. de Oliveira, J. Bernussou, Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions, SIAM Journal on Control and Optimization, vol. 41, pp. 700–711, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. W. J. Mao, Robust stabilization of uncertain time-varying discrete systems and comments on “An improved approach for constrained robust model predictive control”, Automatica, vol. 39, pp. 1109–1112, 2003.

    Article  MATH  Google Scholar 

  13. T. Perezn, H. Haimovich, G. C. Goodwin, On optimal control of constrained linear systems with imperfect state information and stochastic disturbances, International Journal of Robust and Nonlinear Control, vol. 14, pp. 379–393, 2004.

    Article  MathSciNet  Google Scholar 

  14. M. C. de Olivera, J. C. Geromel, J. Bernussou, An LMI optimization approach to multiobjective controller design for discrete-time systems, in Proc. 38th Conf. Decision and Control (USA), pp. 3611–3616, 1999.

  15. F. Cuzzola, J. Jeromel, M. Morari, An improved approach for constrained robust model predictive control, Automatica, vol. 38, pp. 1183–1189, 2002.

    Article  MATH  Google Scholar 

  16. P. P. Khargonekar, I. R. Petersen, K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilization and H control theory, IEEE Transactions on Automatic Control, vol. 35, pp. 356–361, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Xie, Y. C. Soh, Positive real control problem for uncertain linear time-invariant systems, Systems & Control Letters, vol. 24, pp. 265–271, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. C. de Oliveira, J. C. Geromel, A class of robust stability conditions where linear parameter dependence of the Lyapunov function is a necessary condition for arbitrary parameter dependence, Systems & Control Letters, vol. 54, pp. 1131–1134, 2005.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Liu, G.P., Shi, P. et al. Robust Constrained Model Predictive Control Based on Parameter-Dependent Lyapunov Functions. Circuits Syst Signal Process 27, 429–446 (2008). https://doi.org/10.1007/s00034-008-9036-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-008-9036-9

Keywords

Navigation