Skip to main content
Log in

Resonance phenomena in layered media: merging proper and quasi-resonances

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

This article has been updated

Abstract

The appearance of zero group velocity (ZGV) in the higher branches of Lamb waves propagating in three layered plates is analyzed. The ZGV located in a close vicinity of the cutoff frequency is observed, and the relationship between the ZGV and the transverse quasi-resonance is discussed. It is stated that the revealed coincidence of these resonances can lead not only to the effect of “ringing”, but also to damage of the material. The analysis is based on a combination of Cauchy formalism and the exponential fundamental matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The manuscript contains no associated data.

Change history

  • 08 April 2024

    In the original publication, ref. 27 was incorrect and it has been corrected now.

References

  1. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 2, 2nd edn. Robert E. Krieger Publishing Company, Malabar, Florida (1990)

    Google Scholar 

  2. Baggens, O., Ryden, N.: Poisson’s ratio from polarization of acoustic zero-group velocity Lamb mode. J. Acoust. Soc. Am. 138, EL88 (2015)

    Article  Google Scholar 

  3. Bostron, J.H., Rose, J.L., Moose, C.A.: Ultrasonic guided interface waves at a soft-stiff boundary. J. Acoust. Soc. Am. 134, 4351 (2013)

    Article  Google Scholar 

  4. Cao, X., Shi, J., Jin, F.: Cut-off frequencies of Lamb waves in various functionally graded thin films. Appl. Phys. Lett. 99, 121907 (2011)

    Article  Google Scholar 

  5. Ces, M., Clorennec, D., Royer, D., Prada, C.: Edge resonance and zero group velocity Lamb modes in a free elastic plate. J. Acoust. Soc. Am. 130, 620–625 (2011)

    Article  Google Scholar 

  6. Chapman, C.J., Sorokin, S.V.: A Poisson scaling approach to backward wave propagation in a tube. Philos. Trans. R. Soc. A 380, 2231 (2022)

    Article  MathSciNet  Google Scholar 

  7. Chen, C.Ch. et al. Guided ultrasonic waves propagation imaging: a review. Meas. Sci. Technol. 34, Paper 052001 (2023)

  8. Cho, H., Hara, Y., Matsuo, T.: Evaluation of the thickness and bond quality of three-layered media using zero-group-velocity Lamb waves. J. Phys: Conf. Ser. 520, 012023 (2014)

    Google Scholar 

  9. Cho, H., Yaguchi, Y., Ito, H.: Characterization of the bond quality of adhesive plates utilizing zero-group-velocity Lamb waves measured by a laser ultrasonics technique. Mech. Eng. J 2, 14–00335 (2015)

    Article  Google Scholar 

  10. Clorennec, D., Prada, C., Royer, D.: Laser ultrasonic inspection of plates using zero-group velocity Lamb modes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1125–1132 (2010)

    Article  Google Scholar 

  11. Dieulesaint, E., Royer, D.: Elastic Waves in Solids. Wiley, New York (1980)

    Google Scholar 

  12. Ding, W., et al.: Cement-based piezoelectric ceramic composites for sensing elements: a comprehensive state-of-the-art review. Sensors 21(9), 3230 (2021)

    Article  Google Scholar 

  13. Djeran-Maigre, I., et al.: Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoust. Phys. 60(2), 200–207 (2014)

    Article  Google Scholar 

  14. Foraboschi, P.: Three-layered sandwich plate: exact mathematical model. Compos. Part B: Eng. 45(1), 1601–1612 (2013)

    Article  Google Scholar 

  15. Galan-Pinilla, C.A., et al.: Comparative study of dispersion curves for Lamb waves using analytical solutions and semi-analytical methods. Appl. Sci. 13(3), 1706 (2023)

    Article  Google Scholar 

  16. Goldstein, R.V., et al.: Long-wave asymptotics of Lamb waves. Mech. Solids 52, 700–707 (2017)

    Article  Google Scholar 

  17. Haghshenas, A., Jang, J.Y., Khonsari, M.M.: On the intrinsic dissipation and fracture fatigue entropy of metals. Mech. Mater. 155, 103734 (2021)

    Article  Google Scholar 

  18. Hartman, Ph.: Ordinary Differential Equations, 2nd edn. SIAM, N.Y. (1987)

    Google Scholar 

  19. Hayes, M.: A note on group velocity. Proc. R. Soc. A: Math. Phys. Eng. Sci 354(1679), 533–535 (1977)

    Google Scholar 

  20. Hayes, M., Musgrave, M.J.P.: On energy flux and group velocity. Wave Motion 1(1), 75–82 (1979)

    Article  MathSciNet  Google Scholar 

  21. Ilyashenko, A.V.: Stoneley waves in a vicinity of the Wiechert condition. Int. J. Dynam. Control 9, 30–32 (2021)

    Article  MathSciNet  Google Scholar 

  22. Ilyashenko, A.V., et al.: Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media. Russ. J. Nondestruct. Test. 53(4), 243–259 (2017)

    Article  Google Scholar 

  23. Kapania, R.K., Raciti, S.: Recent advances in analysis of laminated beams and plates, Part II: Vibrations and wave propagation. AIAA J. 27, 935–946 (1989)

    Article  MathSciNet  Google Scholar 

  24. Kaplunov, J.D., Kossovitch, LYu., Nolde, E.V.: Dynamics of Thin Walled Elastic Bodies. Academic Press, New York (1997)

    Google Scholar 

  25. Kaplunov, J.D., Markushevich, D.G.: Plane vibrations and radiation of an elastic layer lying on a liquid half-space. Wave Motion 17, 199–211 (1993)

    Article  Google Scholar 

  26. Kaplunov, J., Prikazchikov, D.A., Prikazchikova, L.A.: Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. Int. J. Solids Struct. 113–114, 169–179 (2017)

    Article  Google Scholar 

  27. Kiefer, D. A., et al.: Computing zero-group-velocity points in anisotropic elastic waveguides: globally and locally convergent methods, J. Acoust. Soc. Am. 153, 1386–1398 (2023). https://doi.org/10.1121/10.0017252

  28. Kuznetsov, S.V.: Subsonic Lamb waves in anisotropic plates. Quart. Appl. Math. 60, 577–587 (2002)

    Article  MathSciNet  Google Scholar 

  29. Kuznetsov, S.V.: Abnormal dispersion of flexural Lamb waves in functionally graded plates. Z. Angew. Math. Phys. 70(3), 89 (2019a)

    Article  MathSciNet  Google Scholar 

  30. Kuznetsov, S.V.: Closed form analytical solution for dispersion of Lamb waves in FG plates. Wave Motion 84, 1–7 (2019)

  31. Kuznetsov, S.V.: Stoneley waves at the generalized Wiechert condition. Z. Angew. Math. Phys. 71, 180 (2020)

    Article  MathSciNet  Google Scholar 

  32. Laurent, J., Royer, D., Prada, E.: In-plane backward and zero group velocity guided modes in rigid and soft strips. J. Acoust. Soc. Am. 147(2), 1302–1310 (2020)

    Article  Google Scholar 

  33. Li, B., Li, M.-H., Lu, T.: Interface waves in multilayered plates. J. Acoust. Soc. Am. 143, 2541 (2018)

    Article  Google Scholar 

  34. Li, S., et al.: Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains. Comp. Geotech. 109, 69–81 (2019)

    Article  Google Scholar 

  35. Li, S., et al.: Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier. Eur. J. Environ. Civ. Eng. 24, 2400–2421 (2020)

    Article  Google Scholar 

  36. Lighthill, M.J.: Group velocity. IMA J. Appl. Math. 1(1), 1–28 (1965)

    Article  MathSciNet  Google Scholar 

  37. Lim, T.C., Musgrave, M.J.P.: Stoneley waves in anisotropic media. Nature 225, 372 (1970)

    Article  Google Scholar 

  38. Mezil, S., et al.: Investigation of interfacial stiffnesses of a tri-layer using Zero-Group Velocity Lamb modes. J. Acoust. Soc. Am. 138(5), 3202–3209 (2015)

    Article  Google Scholar 

  39. Murty, G.S.: Wave propagation at an unbounded interface between two elastic half-spaces. J. Acous. Soc. Am 58, 1094 (1975)

    Article  Google Scholar 

  40. Musielak, Z.E., Musielak, D.E., Mobashi, H.: Method to determine cutoff frequencies for acoustic waves propagating in nonisothermal media. Phys. Rev. E 73, 036612 (2006)

    Article  Google Scholar 

  41. Nobili, A.: Stoneley waves in media with microstructure. In: Indeitsev, D.A., Krivtsov, A.M. (eds) Advanced Problem in Mechanics II. APM 2020. Lecture Notes in Mechanical Engineering. Springer, Cham (2022)

  42. Plessky, V., Koskela, J., Yandrapalli, Y.: Attenuation of Lamb Modes and SH Waves near cut-off Frequencies. In: 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). Keystone, CO, USA, pp. 1–3 (2020)

  43. Plucinski, P., Jaskowiec, J., Wójtowicz, M.: Three-dimensional bending analysis of multi-layered orthotropic plates by two-dimensional numerical model. Materials 14, 6959 (2021)

    Article  Google Scholar 

  44. Prada, C., Clorennec, D., Royer, D.: Local vibration of an elastic plate and zero-group velocity Lamb modes. J. Acoust. Soc. Am. 124(1), 203–212 (2008)

    Article  Google Scholar 

  45. Prada, C., Clorennec, D., Royer, D.: Power law decay of zero group velocity Lamb modes. Wave Motion 45, 723–738 (2008)

    Article  MathSciNet  Google Scholar 

  46. Prada, C., Clorennec, D., Royer, D.: Influence of anisotropy on zero-group velocity Lamb modes. J. Acoust. Soc. Am. 126, 620–625 (2009)

    Article  Google Scholar 

  47. Ruzzene, M., et al.: Wave propagation in sandwich plates with periodic auxetic core. J. Intel. Mat. Syst. Struct. 13(9), 587–597 (2002)

    Article  Google Scholar 

  48. Sezawa, K., Kanai, K.: The range of possible existence of Stoneley waves, and some related problems. Bull. Earthquake Res. Inst. Tokyo Univ. 17, 1–8 (1939)

    Google Scholar 

  49. Silva, J..P., Chen, B.-Q., Videiro, P.M.: FPSO hull structures with sandwich plate system in cargo tanks. Appl. Sci. 12(19), 9628 (2022)

    Article  Google Scholar 

  50. Stoneley, R.: Elastic waves at the surface of separation of two solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 106, 416–428 (1924)

    Google Scholar 

  51. Terentjeva, E.O., et al.: Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source. Acoust. Phys. 61(3), 356–367 (2015)

    Article  Google Scholar 

  52. Ting, T.C.T.: Rayleigh waves, Stoneley waves, Love waves, Slip waves and one-component waves in a plate or layered plate. J. Mech. Materials Struct. 4(4), 631–647 (2009)

    Article  Google Scholar 

  53. Tolstoy, I.: Dispersion and simple harmonic point sources in wave ducts. J. Acoust. Soc. Am. 27(5), 897–907 (1955)

    Article  Google Scholar 

  54. Tolstoy, I.: Resonant frequencies and high modes in layered wave guides. J. Acoust. Soc. Am. 28, 1182–1192 (1956)

    Article  Google Scholar 

  55. Tolstoy, I., Usdin, E.: Wave propagation in elastic plates: Low and high mode dispersion. J. Acoust. Soc. Am. 29, 37–42 (1957)

    Article  Google Scholar 

  56. Vinh, P.C., Malischewsky, P.G., Giang, P.T.H.: Formulas for the speed and slowness of Stoneley waves in bonded isotropic elastic half-spaces with the same bulk wave velocities. Int. J. Eng. Sci. 60, 53–58 (2012)

    Article  MathSciNet  Google Scholar 

  57. Wiechert, E., Zöppritz, K.: Our present knowledge of the earth, In: Report Board of Regents Smithsonian Institution, pp. 431–439 (1908)

  58. Wilde, M., Golub, M.V., Eremin, A.A.: Elastodynamic behaviour of laminate structures with soft thin interlayers: theory and experiment. Materials 5(4), 1307 (2022)

    Article  Google Scholar 

  59. Wu, Y., et al.: On the existence of zero-group velocity modes in free rails: modeling and experiments. NDT & E Int. 132, 102727 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to S. V. Kuznetsov.

Ethics declarations

Conflict of interest

The author has no competing interests.

Ethics approval and consent to participate

The study does not include human or animal subjects.

Consent for publication

Herein, I give my consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Resonance phenomena in layered media: merging proper and quasi-resonances. Z. Angew. Math. Phys. 74, 245 (2023). https://doi.org/10.1007/s00033-023-02142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02142-2

Keywords

Mathematics Subject Classification

Navigation