Skip to main content
Log in

A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, the He–Elzaki transform method (HEM) is proposed. The method is formulated by combining He’s variation iteration method and the modified Laplace transform, known as the Elzaki integral transform. This method is designed to solve the time-fractional telegraph equation that arises in electromagnetics. The Caputo sense is used to describe fractional derivatives. One of the advantages of this method is that the computation of the Lagrange multiplier is not necessarily required through the convolution theorem or integration in recurrence relations. Additionally, to reduce nonlinear computational terms, He’s polynomial is determined using the homotopy perturbation method. The proposed method is applied to several examples of nonlinear fractional telegraph equations. The results obtained from these examples demonstrate that the proposed method is an efficient technique that facilitates the process of solving time-fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data that were used in this work are included in the paper.

References

  1. Khan, H., Shah, R., Kumam, P., Baleanu, D., Arif, M.: An efficient analytical technique, for the solution of fractional-order telegraph equations. Mathematics 7(5), 1–19 (2019). https://doi.org/10.3390/math7050426

    Article  Google Scholar 

  2. Abdou, M.A.: Adomian decomposition method for solving the telegraph equation in charged particle transport. J. Quant. Spectrosc. Radiat. Transf. 95(3), 407–414 (2005). https://doi.org/10.1016/j.jqsrt.2004.08.045

    Article  Google Scholar 

  3. Yıldırım, A.: He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. Int. J. Comput. Math. 87(13), 2998–3006 (2010). https://doi.org/10.1080/00207160902874653

    Article  MathSciNet  MATH  Google Scholar 

  4. Alawad, F.A., Yousif, E.A., Arbab, A.I.: A new technique of Laplace variational iteration method for solving space-time fractional telegraph equations. Int. J. Differ. Equ. (2013). https://doi.org/10.1155/2013/256593

    Article  MathSciNet  MATH  Google Scholar 

  5. Srivastava, V.K., Awasthi, M.K., Chaurasia, R.K., Tamsir, M.: The telegraph equation and its solution by reduced differential transform method. Model. Simul. Eng. (2013). https://doi.org/10.1155/2013/746351

    Article  Google Scholar 

  6. Saadatmandi, A., Dehghan, M.: Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numer. Methods Partial Differ. Equ. 26(1), 239–252 (2010). https://doi.org/10.1002/num.20442

    Article  MathSciNet  MATH  Google Scholar 

  7. Sevimlican, A.: An approximation to solution of space and time fractional telegraph equations by he’s variational iteration method. Math. Probl. Eng. (2010). https://doi.org/10.1155/2010/290631

    Article  MathSciNet  MATH  Google Scholar 

  8. Abdulazeez, S.T., Modanli, M.: Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method. Alexandria Eng. J. 61(12), 12443–12451 (2022)

    Article  Google Scholar 

  9. Al-badrani, H., Saleh, S., Bakodah, H.O., Al-Mazmumy, M.: Numerical solution for nonlinear telegraph equation by modified Adomian decomposition method. Nonlinear Anal. Differ. Equ. 4(5), 243–257 (2016)

    Article  Google Scholar 

  10. Mohamed, M.Z., Elzaki, T.M., Algolam, M.S., Abd Elmohmoud, E.M., Hamza, A.E.: New modified variational iteration Laplace transform method compares Laplace adomian decomposition method for solution time-partial fractional differential equations. J. Appl. Math. 1–10, 2021 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Kumar, M., Saxena, A.S.: New iterative method for solving higher order KDV equations, pp. 246–257

  12. Javidi, M., Ahmad, B.: Numerical solution of fourth-order time-fractional partial differential equations with variable coefficients. J. Appl. Anal. Comput. 5(1), 52–63 (2015). https://doi.org/10.11948/2015005

    Article  MathSciNet  MATH  Google Scholar 

  13. Shou, D.H.: The homotopy perturbation method for nonlinear oscillators. Comput. Math. with Appl. 58(11–12), 2456–2459 (2009). https://doi.org/10.1016/j.camwa.2009.03.034

    Article  MathSciNet  MATH  Google Scholar 

  14. Biazar, J., Ghanbari, B., Porshokouhi, M.G., Porshokouhi, M.G.: He’s homotopy perturbation method: a strongly promising method for solving non-linear systems of the mixed Volterra-Fredholm integral equations. Comput. Math. Appl. 61(4), 1016–1023 (2011). https://doi.org/10.1016/j.camwa.2010.12.051

    Article  MathSciNet  MATH  Google Scholar 

  15. Biazar, J., Ghazvini, H.: Homotopy perturbation method for solving hyperbolic partial differential equations. Comput. Math. Appl. 56(2), 453–458 (2008). https://doi.org/10.1016/j.camwa.2007.10.032

    Article  MathSciNet  MATH  Google Scholar 

  16. Biazar, J., Badpeima, F., Azimi, F.: Application of the homotopy perturbation method to Zakharov–Kuznetsov equations. Comput. Math. Appl. 58(11), 2391–2394 (2009). https://doi.org/10.1016/j.camwa.2009.03.102

    Article  MathSciNet  MATH  Google Scholar 

  17. Elzaki, T.M., Biazar, J.: Homotopy perturbation method and Elzaki transform for solving system of nonlinear partial differential equations. World Appl. Sci. J. 24(7), 944–948 (2013). https://doi.org/10.5829/idosi.wasj.2013.24.07.1041

    Article  Google Scholar 

  18. Loyinmi, A.C., Akinfe, T.K.: Exact solutions to the family of Fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Eng. Reports 2(2), 1–32 (2020). https://doi.org/10.1002/eng2.12084

    Article  Google Scholar 

  19. Ul Rahman, J., Lu, D., Suleman, M., He, J.H., Ramzan, M.: HE-Elzaki method for spatial diffusion of biological population. Fractals (2019). https://doi.org/10.1142/S0218348X19500695

    Article  MathSciNet  MATH  Google Scholar 

  20. Anjum, N., Suleman, M., Lu, D., Hes, J.H., Ramzan, M.: Numerical iteration for nonlinear oscillators by Elzaki transform. J. Low Freq. Noise Vib. Act. Control (2019). https://doi.org/10.1177/1461348419873470

  21. Lu, D., Suleman, M., He, J.H., Farooq, U., Noeiaghdam, S., Chandio, F.A.: Elzaki projected differential transform method for fractional order system of linear and nonlinear fractional partial differential equation. Fractals (2018). https://doi.org/10.1142/S0218348X1850041X

    Article  MathSciNet  Google Scholar 

  22. Patel, T., Patel, H., Meher, R.: Analytical study of atmospheric internal waves model with fractional approach. J. Ocean Eng. Sci. (2022)

  23. Patel, T., Patel, H.: An analytical approach to solve the fractional-order (2\(+\) 1)-dimensional Wu-Zhang equation. Math. Methods Appl. Sci. 46(1), 479–489 (2023)

    Article  MathSciNet  Google Scholar 

  24. Tandel, P., Patel, H., Patel, T.: Tsunami wave propagation model: a fractional approach. J. Ocean Eng. Sci. 7(6), 509–520 (2022)

    Article  Google Scholar 

  25. Patel, H., Patel, T., Pandit, D.: An efficient technique for solving fractional-order diffusion equations arising in oil pollution. J. Ocean Eng. Sci. 8(3), 217–225 (2023)

    Article  Google Scholar 

  26. Patel, H., Patel, T.: Analytical study of instability phenomenon with and without inclination in homogeneous and heterogeneous porous media using fractional approach. J. Porous Media 25(9) (2022)

  27. Patel, T., Meher, R.: A study on convective-radial fins with temperature-dependent thermal conductivity and internal heat generation. Nonlinear Eng. 8(1), 145–156 (2019)

    Article  Google Scholar 

  28. Patel, T., Meher, R.: Thermal Analysis of porous fin with uniform magnetic field using Adomian decomposition Sumudu transform method. Nonlinear Eng. 6(3), 191–200 (2017)

    Article  Google Scholar 

  29. Patel, T., Meher, R.: Adomian decomposition Sumudu transform method for convective fin with temperature-dependent internal heat generation and thermal conductivity of fractional order energy balance equation. Int. J. Appl. Comput. Math. 3, 1879–1895 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Elzaki, T.M., Ishag, A.A.: Solution of telegraph equation by Elzaki-Laplace transform. African J. Eng. Technol. 2(1), 1–7 (2022). https://doi.org/10.47959/AJET.2021.1.1.8

    Article  Google Scholar 

  31. Hilal, E.M.A.: Elzaki and Sumudu transforms for solving some differential equations. Global J. Pure Appl. Math. 8(2), 167–173 (2012)

    Google Scholar 

  32. Ige, O.E., Oderinu, R.A., Elzaki, T.M.: Adomian polynomial and Elzaki transform method for solving sine-gordon equations. IAENG Int. J. Appl. Math. 49(3), 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Murad, M.A.S.: Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients. Appl. Math. J. Chinese Univ. 37(3), 404–414 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ziane, D., Cherif, M.H.: Resolution of nonlinear partial differential equations by Elzaki transform decomposition method laboratory of mathematics and its applications. J. Approx. Theory Appl. Math. 5, 17–30 (2015)

    Google Scholar 

  35. Malo, D.H., Rogash Younis Masiha, M.A.S., Murad, S.T.A.: A new computational method based on integral transform for solving linear and nonlinear fractional systems. J. Mat. MANTIK 7(1), 9–19 (2021)

    Article  Google Scholar 

  36. Shawagfeh, N.: Decomposition method for fractional partial differential equations. (2017) https://doi.org/10.5829/idosi.wasj.2019.18.24

  37. Suleman, M., Elzaki, T., Wu, Q., Anjum, N., Rahman, J.U.: New application of Elzaki projected differential transform method. J. Comput. Theor. Nanosci. 14(1), 631–639 (2017)

    Article  Google Scholar 

  38. Suleman, M., Elzaki, T.M., Rahman, J.U., Wu, Q.: A novel technique to solve space and time fractional telegraph equation. J. Comput. Theor. Nanosci. 13(3), 1536–1545 (2016)

    Article  Google Scholar 

  39. Elzaki, T.M., Alamri, A.S.: Note on new homotopy perturbation method for solving non-linear integral equations. J. Math. Comput. Sci. 6(1), 149–155 (2016)

    Google Scholar 

  40. Slonevskii, R.V., Stolyarchuk, R.R.: Rational-fractional methods for solving stiff systems of differential equations. J. Math. Sci. 150(5), 2434–2438 (2008). https://doi.org/10.1007/s10958-008-0141-x

    Article  MathSciNet  MATH  Google Scholar 

  41. Prakash, A., Verma, V.: Numerical method for fractional model of Newell–Whitehead–Segel equation. Front. Phys. 7(FEB), 1–10 (2019). https://doi.org/10.3389/fphy.2019.00015

    Article  Google Scholar 

  42. Elzaki, T.M.: The new integral transform Elzaki transform. Global J. Pure Appl. Math. 7(1), 57–64 (2011)

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors have received no direct funding or support for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Sadeq Taha Abdulazeez.

Ethics declarations

Conflict of interest

There are no conflicts of interest among the authors of this paper.

Ethics approval and consent to participate

This work was completed under ethics and consent.

Consent for publication

All authors agreed to the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modanli, M., Murad, M.A.S. & Abdulazeez, S.T. A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves. Z. Angew. Math. Phys. 74, 186 (2023). https://doi.org/10.1007/s00033-023-02076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02076-9

Keywords

Mathematics Subject Classification

Navigation