Skip to main content
Log in

Study of the stability to an anisotropic reaction–diffusion equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The stability of solutions to an anisotropic reaction–diffusion equation is considered in this paper. Since the equation generally is with hyperbolic-parabolic mixed type and the Dirichlet boundary value condition may be overdetermined, how to impose a suitably partial boundary value condition has been a valuable problem for a long time. A new partial boundary value condition is given. Based on this new partial boundary value condition, the stability of weak solutions is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

There are not any data in this paper

References

  1. Antonelli, F., Barucci, E., Mancino, M.E.: A comparison result for FBSDE with applications to decisions theory. Math. Meth. Oper. Res. 54, 407–423 (2001)

    Article  MathSciNet  Google Scholar 

  2. Andreianov, B.P., Bendahmane, M., Karlsen, K.H.: Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyper. Differ. Equ. 7, 1–67 (2010)

    Article  MathSciNet  Google Scholar 

  3. Andreianov, B.P., Bendahmane, M., Karlsen, K.H., Ouaro, S.: Well-posedness results for triply nonlinear degenerate parabolic equations. J. Differ. Equ. 247, 277–302 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bardos, C., Leroux, A.Y., Nedelec, J.C.: First order quasilinear equations with boundary condition. Commun. Partial Differ. Equ. 4, 1017–1024 (1979)

    Article  MathSciNet  Google Scholar 

  5. Bendahmane, M., Karlsen, K.H.: Uniqueness of entropy solutions for quasilinear anisotropic degenerate parabolic equation. Contemp. Math. 371, 1–27 (2005)

    Article  Google Scholar 

  6. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)

    Article  MathSciNet  Google Scholar 

  7. Enrico, G.: Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Bosten (1984)

    Google Scholar 

  8. Fichera, G.: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. CI. Sci Fis. Mat. Nat. Sez. 1(8), 1–30 (1956)

    MathSciNet  Google Scholar 

  9. Karachalios, N.I., Zographopoulos, K.B.: On the dynamics of degenerate paraolic equation: global bifurcation of stationary states and convergence. Cal. Var. 25(3), 361–393 (2006)

    Article  Google Scholar 

  10. Kobayasi, K., Ohwa, H.: Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle. J. Differ. Equ. 252, 137–167 (2012)

    Article  MathSciNet  Google Scholar 

  11. Li, Y.C., Wang, Q.: Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations. J. Differ. Equ. 252, 4719–4741 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mascia, C., Porretta, A., Terracina, A.: Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163, 87–124 (2002)

    Article  MathSciNet  Google Scholar 

  13. Michel, A., Vovelle, J.: Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41, 2262–2293 (2003)

    Article  MathSciNet  Google Scholar 

  14. Murray, J.D.: Mathematical Biology, II: Spatial Models and Biomedical Applications. Springer, New York (2003)

    Book  Google Scholar 

  15. Oleinik, O.A., Radkevic, E.V.: Second Order Differential Equations with Nonnegative Characteristic Form. Rhode Island: American Mathematical Society, and New York: Plenum Press, (1973)

  16. Oleinǐk, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theorem. Chapman and Hall/CRC, London (1999)

    Google Scholar 

  17. Otto, F.: Initial-boundary value problem for a scalar conservation laws. C.R. Acda. Sci. ParisSér. I Math. 322, 729–734 (1996)

    MathSciNet  Google Scholar 

  18. Sulem, C., Sulem, P.L.: The nonlinear Schrodinger equation, Applied Mathematical Sciences, vol. 139. Springer, Berlin (1999)

    Google Scholar 

  19. Wu, Z., Zhao, J.: The first boundary value problem for quasilinear degenerate parabolic equations of second order in several variables. Chin. Ann. Math. 4B, 57–76 (1983)

    MathSciNet  Google Scholar 

  20. Wu, Z., Zhao, J.: Some general results on the first boundary value problem for quasilinear degenerate parabolic equations. Chin. Ann. Math. 4B, 319–328 (1983)

    MathSciNet  Google Scholar 

  21. Zhan, H., Feng, Z.: Stability of hyperbolic-parabolic mixed type equations with partial boundary conditions. J. Differ. Equ. 264, 7384–7411 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zhan, H., Feng, Z.: Partial boundary value condition for a nonlinear degenerate parabolic equation. J. Differ. Equ. 267(5), 2874–2890 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhan, H., Feng, Z.: Degenerate parabolic equation with partial boundary value conditions. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2075351

    Article  Google Scholar 

  24. Zhang, J., Zhao, J.: On the global existence and uniqueness of solutions to the non-stationary boundary layer problem. Sci. China Ser. A Math. 49, 932–960 (2006)

    Article  Google Scholar 

  25. Zhao, J., Zhan, H.: Uniqueness and stability of solution for Cauchy problem of degenerate quasilinear parabolic equations. Sci. China Ser. A Math. 48, 583–593 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their carefully reviewing my paper!

Funding

This work is supported by Natural Science Foundation of Fujian Province (No. 2022J011242), China.

Author information

Authors and Affiliations

Authors

Contributions

The author reads and approves the final manuscript.

Corresponding author

Correspondence to Huashui Zhan.

Ethics declarations

Conflict of interest

The author declares that there are not competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H. Study of the stability to an anisotropic reaction–diffusion equation. Z. Angew. Math. Phys. 74, 210 (2023). https://doi.org/10.1007/s00033-023-02072-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02072-z

Keywords

Mathematics Subject Classification

Navigation