Skip to main content
Log in

The Cauchy problem for time-fractional linear nonlocal diffusion equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This manuscript is dedicated to study the Cauchy problem for time-fractional linear nonlocal diffusion problems in the whole \({\mathbb {R}}^{N}\), including the existence and uniqueness of solutions, their asymptotic behaviour as t goes to infinity, and the analysis of the corresponding rescaled problems by rescaling the convolution kernel J in some appropriate ways. Two time-fractional models will be considered in our work, one is related to the simplest linear nonlocal diffusion operator of the form \(J*u-u\), and the other is proposed as a nonlocal analogy of higher-order evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  3. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  4. Pr\(\ddot{u}\)ss, J.: Evolutionary Integral Equations and Applications. Birkh\(\ddot{a}\)user Verlag, Basel (1993)

  5. Clëment, P., Nohel, J.A.: Asymptotic behaviour of solutions of nonlinear Volterra equations with completely positive Kernells. SIAM J. Math. Anal. 12, 514–535 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Li, L., Liu, J.G., Wang, L.: Cauchy problems for Keller–Segel type time-space fractional diffusion equation. J. Differ. Equ. 265, 1044–1096 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Kian, Y., Oksanen, L., Soccorsi, E., Yamamoto, M.: Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differ. Equ. 264, 1146–1170 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Li, Z., Cheng, X., Li, G.: An inverse problem in time-fractional diffusion equations with nonlinear boundary condition. J. Math. Phys. 60, 091502 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Huang, X., Li, Z., Yamamoto, M.: Carleman estimates for the time-fractional advection-diffusion equations and applications. Inverse Prob. 35, 045003 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Kaltenbacher, B., Rundell, W.: On an inverse potential problem for a fractional reaction-diffusion equation. Inverse Prob. 35, 065004 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Hu, J.H., Alikhanov, A., Efendiev, Y., Leung, W.T.: Partially explicit time discretization for time fractional diffusion equation. Fract. Calc. Appl. Anal. 35(5), 1908–1924 (2022)

    MathSciNet  MATH  Google Scholar 

  12. de Andrade, B., Van Au, V., O’Regan, D., Tuan, N.H.: Well-posedness results for a class of semilinear time-fractional diffusion equations. Z. Angew. Math. Phys. 71, 161 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Dien, N.M., Nane, E., Minh, N.D., Trong, D.D.: Global solutions of nonlinear fractional diffusion equations with time-singular sources and perturbed orders. Fract. Calc. Appl. Anal. 25, 1166–1198 (2022)

    MathSciNet  MATH  Google Scholar 

  14. Yoshikazu, G., Hiroyoshi, M., Shoichi, S.: On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion equation. J. Differ. Equ. 316, 364–386 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Han, B.S., Kim, K.H., Park, D.: A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on \(C^{1}\) domains. Discret. Contin. Dyn. Syst. 41(7), 3415–3445 (2021)

    MATH  Google Scholar 

  16. Zheng, X., Wang, H.: Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations. Z. Angew. Math. Phys. 71, 34 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Geng, D.X., Wang, H.B.: Normal form formulations of double-Hopf bifurcation for partial functional differential equations with nonlocal effect. J. Differ. Equ. 309, 741–785 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Sun, X.L., Yuan, R.: Hopf bifurcation in a diffusive population system with nonlocal delay effect. Nonlinear Anal. 214, 112544 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Briane, M., Casado-daz, J.: Increase of mass and nonlocal effects in the homogenization of magneto-elastodynamics problems. Calc. Var. 60, 163 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Guo, S.J.: Bifurcation in a reaction-diffusion model with nonlocal delay effect and nonlinear boundary condition. J. Differ. Equ. 289, 236–278 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Manimaran, J., Shangerganesh, L., Debbouche, A.: Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy. J. Comput. Appl. Math. 382, 113066 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Chen, C., Li, C., Li, J.: Global boundedness and the Allee effect in a nonlocal bistable reaction-diffusion equation in population dynamics. Nonlinear Anal. Real World Appl. 60, 103309 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Aranda, O.T., Penna, A.L.A., Oliveira, F.A.: Nonlocal pattern formation effects in evolutionary population dynamics. Phys. A 572(15), 125865 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Coclite, G.M., Dipierro, S., Maddalena, F., Valdinoci, E.: Wellposedness of a nonlinear peridynamic model. Nonlinearity 32, 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Coclite, G.M., Dipierro, S., Maddalena, F., Valdinoci, E.: Singularity formation in fractional Burgers equations. J. Nonlinear. Sci. 30, 1285–1305 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Coclite, G.M., Dipierro, S., Fanizza, G., Maddalena, F., Valdinoci, E.: Dispersive effects in a scalar nonlocal wave equation inspired by peridynamics. Nonlinearity 35, 5664–5713 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Dien, N.M.: On mild solutions of the generalized nonlinear fractional pseudo-parabolic equation with a nonlocal condition. Fract. Calc. Appl. Anal. 25, 559–583 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Nguyen, A.T., Hammouch, Z., Karapinar, E., Tuan, N.H.: On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation. Math. Meth. Appl. Sci. 44(18), 14791–14806 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Zhou, Y., Shangerganesh, L., Manimaran, J., Debbouche, A.: A class of time-fractional reaction-diffusion equation with nonlocal boundary condition. Math. Meth. Appl. Sci. 41(8), 2987–2999 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Zhu, B., Liu, L.S., Wu, Y.H.: Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations. Fract. Calc. Appl. Anal. 20(6), 1338–1355 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, AMS, Providence, Rhode Island (2010)

    MATH  Google Scholar 

  32. Sun, J.W.: Effects of dispersal and spatial heterogeneity on nonlocal logistic equations. Nonlinearity 34, 5434–5455 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Sun, J.W.: Nonlocal dispersal equations in domains becoming unbounded. Discret. Contin. Dyn. Syst. Ser. B 28(1), 287–293 (2023)

    MathSciNet  MATH  Google Scholar 

  34. Xu, W.B., Li, W.T., Ruan, S.G.: Spatial propagation in nonlocal dispersal Fisher-KPP equations. J. Funct. Anal. 280, 108957 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Amarakristi, O.M., Shen, W.X.: Nonlocal dispersal equations with almost periodic dependence. I. Principal spectral theory. J. Differ. Equ. 295, 1–38 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Peng, L., Zhou, Y., Ahamd, B.: The well-posedness for fractional nonlinear Schrödinger equations. Comput. Math. Appl. 77, 1998–2005 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Zhou, Y., Peng, L., Ahamd, B., Alsaed, A.: Energy methods for fractional Navier–Stokes equations. Chaos. Soliton. Fract. 102, 78–85 (2017)

    MathSciNet  Google Scholar 

  38. Kim, I., Kim, K.H., Lim, S.B.: An \(L_{p}(L_{q})\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications, vol. 2. Springer, Berlin (2014)

    MATH  Google Scholar 

  40. Keyantuo, V., Warma, M.: On the interior approximate controllability for fractional wave equations. Discret. Contin. Dyn. Syst. 36(7), 3719–3739 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Gorenflo, R., Luchko, Y., Mainardi, F.: Analytical properties and applications to fractoinal differential equations. Fract. Calc. Appl. Anal. 2, 383–414 (1999)

    MathSciNet  MATH  Google Scholar 

  42. Folland, G.B.: Fourier Analysis and Its Applications. American Mathematical Society, California (1992)

    MATH  Google Scholar 

  43. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Beghin, L., De Gregorio, A.: Stochastic solutions for time-fractional heat equations with complex spatial variables. Fract. Calc. Appl. Anal. 25, 244–266 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Alberini, C., Capitanelli, R., D’Ovidio, M., Vita, S.F.: On the time fractional heat equation with obstacle. J. Comput. Appl. Math. 415(1), 114470 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Hu, X.Z., Rodrigo, C., Gaspar, F.J.: Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. J. Comput. Phys. 416(1), 109540 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Yang, S., Xiong, X., Pan, P., Sun, Y.: Stationary iterated weighted Tikhonov regularization method for identifying an unknown source term of time-fractional radial heat equation. Numer. Algor. 90, 881–903 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Andrea, G.: Dispersion relations for the time-fractional Cattaneo–Maxwell heat equation. J. Math. Phys. 59, 013506 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Chen, G.Y., Wei, J.C., Zhou, Y.F.: Finite time blow-up for the fractional critical heat equation in \({\mathbb{R} }^{n}\). Nonlinear Anal. 193, 111420 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11471015); the Natural Science Foundation of Anhui Province (1508085MA01).

Author information

Authors and Affiliations

Authors

Contributions

The first author SW wrote the main manuscript text and the corresponding author gave the guidance and advice. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xian-Feng Zhou.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhou, XF. The Cauchy problem for time-fractional linear nonlocal diffusion equations. Z. Angew. Math. Phys. 74, 156 (2023). https://doi.org/10.1007/s00033-023-02053-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02053-2

Keywords

Navigation