Skip to main content
Log in

Elasticity solutions of functionally graded piezoelectric plates under electric fields in cylindrical bending

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper presents elasticity solutions for functionally graded piezoelectric plates under electric fields in cylindrical bending. Based on the generalized Mian and Spencer plate theory, the assumption of the material parameters which can vary along the thickness direction of the plate in an arbitrary fashion is kept; however, the materials are extended from elastic materials to piezoelectric materials. The electric potential function is constructed following the forms of the displacement functions in Mian and Spencer plate theory. The essential idea of Mian and Spencer plate theory (J Mech Phys Solids 46:2283–2295, 1998) is that the three-dimensional elasticity equations for inhomogeneous materials can be obtained by two-dimensional solution for homogeneous materials by straightforward substitutions. Through rigorous derivation, the corresponding elasticity solutions of cylindrical bending of functionally graded piezoelectric plates under electric fields are obtained. In the numerical examples, the accuracy of the present solutions is verified and the responses of plates subjected to electrical potential difference and electrical displacement are investigated, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu, C.C.M., Kahn, M., Moy, W.: Piezoelectric ceramics with functional gradients: a new application in material design. J. Am. Ceram. Soc. 79, 809–812 (1996)

    Article  Google Scholar 

  2. Zhu, X., Meng, Z.: Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator. Sensor. Actuat. A-Phys. 48(3), 169–176 (1995)

    Article  MathSciNet  Google Scholar 

  3. Zhang, S., Zhao, G., Rao, M.N., Schmidt, R., Yu, Y.: A review on modeling techniques of piezoelectric integrated plates and shells. J. Intel. Mat. Syst. Str. 30(8), 1133–1147 (2019)

    Article  Google Scholar 

  4. Wu, C., Liu, Y.: A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Compos. Struct. 147, 1–15 (2016)

    Article  Google Scholar 

  5. Magouh, N., Azrar, L., Alnefaie, K.: Semi-analytical solutions of static and dynamic degenerate, nondegenerate and functionally graded electro-elastic multilayered plates. Appl. Math. Model. 114, 722–744 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, C., Ding, S.: Coupled electro-elastic analysis of functionally graded piezoelectric material plates. Smart. Struct. Syst. 16(5), 781–806 (2015)

    Article  Google Scholar 

  7. Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)

    Article  Google Scholar 

  8. Zhong, Z., Wu, L., Chen, W.: Progress in the study on mechanics problems of functionally graded materials and structures. Adv. Mech. 40(5), 528–541 (2010)

    Google Scholar 

  9. Nourmohammadi, H., Behjat, B.: Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM. Eng. Anal. Bound. Elem. 99, 131–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar, P., Harsha, S.P.: Modal analysis of functionally graded piezoelectric material plates. Mater. Today Proc. 28, 1481–1486 (2020)

    Article  Google Scholar 

  11. Muradova, A.D., Stavroulakis, G.E.: Mathematical models with buckling and contact phenomena for elastic plates: a review. Mathematics 8(4), 566 (2020)

    Article  Google Scholar 

  12. Zhong, Z., Shang, E.T.: Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. Int. J. Solids. Struct. 40(20), 5335–5352 (2003)

    Article  MATH  Google Scholar 

  13. Li, X., Ding, H., Chen, W.: Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Sci. China. Ser. G. 51(8), 1116–1125 (2008)

    Article  MATH  Google Scholar 

  14. Li, X., Wu, J., Ding, H., Chen, W.: 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending. Int. J. Eng. Sci. 49(7), 664–676 (2011)

    Article  Google Scholar 

  15. Zhao, X., Li, X., Li, Y.: Axisymmetric analytical solutions for a heterogeneous multi-Ferroic circular plate subjected to electric loading. Mech. Adv. Mater. Struct. 25(10), 795–804 (2017)

    Article  Google Scholar 

  16. Li, Y., Pan, E.: Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int. J. Eng. Sci. 97, 40–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, L., Wang, X.: Three-dimensional analytical solution for the instability of a parallel array of mutually attracting identical simply supported piezoelectric microplates. Z. Angew. Math. Phys. 68(6), 136 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghafarollahi, A., Shodja, H.M.: Scattering of transverse surface waves by a piezoelectric fiber in a piezoelectric half-space with exponentially varying electromechanical properties. Z. Angew. Math. Phys. 70(2), 66 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zenkour, A.M., Hafed, Z.S.: Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory. Mech. Adv. Mater. Struct. 27(18), 1551–1562 (2019)

    Article  Google Scholar 

  20. Bouderba, B., Berrabah, H.M.: Bending response of porous advanced composite plates under thermomechanical loads. Mech. Based Des. Struct. 50(9), 3262–3282 (2020)

    Article  Google Scholar 

  21. Bouderba, B., Hamza Madjid, B., Pham, D.T.: Bending analysis of P-FGM plates resting on nonuniform elastic foundations and subjected to thermo-mechanical loading. Cogent Eng. 9(1), 2108576 (2022)

    Article  Google Scholar 

  22. Mian, M.A., Spencer, A.J.M.: Exact solutions for functionally graded and laminated elastic materials. J. Mech. Phys. Solids. 46(12), 2283–2295 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michell, J.H.: On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. Lond. Math. Soc. 31(1), 100–124 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, B., Ding, H., Chen, W.: Elasticity solutions for functionally graded plates in cylindrical bending. Appl. Math. Mech. 29(8), 999–1004 (2008)

    Article  MATH  Google Scholar 

  25. Yang, B., Ding, H., Chen, W.: Elasticity solutions for a uniformly loaded rectangular plate of functionally graded materials with two opposite edges simply supported. Acta Mech. 207(3), 245–258 (2009)

    Article  MATH  Google Scholar 

  26. Ding, H., Chen, W.: Three Dimensional Problems of Piezoelasticity. Nava Science Publishers, New York (2001)

    Google Scholar 

  27. Wu, C., Tsai, Y.: Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45(9), 744–769 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11872336, 51808499), Project of State Key Laboratory for Strength and Vibration of Mechanical Structures (Nos. SV2020-KF-13) and the Science Foundation of Zhejiang Province of China (No. LY22E080016, LQ21A020009).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and L.S. wrote the main manuscript text; Y.S. and F.C prepared the figures and tables; Y.S. performed the numerical simulation; B.Y. reviewed and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bo Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expressions of the introduced functions related to variable z and integral constants in electric potential case

$$\begin{aligned} g_{i}^{n} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left( {z-\xi } \right) ^{n}\xi ^{i}\frac{\lambda _{33} c_{13} +e_{33} e_{31} }{c_{33} \lambda _{33} +e_{33}^{2} }} d\xi ,\qquad \left( {i,n=0,1} \right) \nonumber \\ h_{i}^{n} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left( {z-\xi } \right) ^{n}\xi ^{i}\left( {c_{11} -c_{13} \frac{c_{13} \lambda _{33} +e_{33} e_{31} }{c_{33} \lambda _{33} +e_{33}^{2} }-e_{31} \frac{c_{13} e_{33} -c_{33} e_{31} }{e_{33}^{2} +c_{33} \lambda _{33} }} \right) } d\xi ,\quad \left( {i,n=0,1} \right) ,\nonumber \\ f_{i}^{n} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left( {z-\xi } \right) ^{n}\xi ^{i}\frac{c_{33} e_{31} -c_{13} e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }d\xi },\quad \left( {i,n=0,1} \right) ,\nonumber \\ a_{i}^{n} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left( {z-\xi } \right) ^{n}\xi ^{i}\frac{e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }d\xi },\quad \left( {i,n=0,1} \right) ,\nonumber \\ b_{i}^{n} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left( {z-\xi } \right) ^{n}\xi ^{i}\frac{c_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }d\xi },\quad \left( {i,n=0,1} \right) ,\nonumber \\ f_{5} \left( z \right)= & {} \int \limits _{-h / 2}^z {\frac{g_{5} \left( \xi \right) }{c_{55} }} d\xi , \quad f_{6} \left( z \right) =\int \limits _{-h / 2}^z {\frac{e_{15} }{c_{55} }} d\xi ,\nonumber \\ f_{7} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left\{ {\frac{f_{0}^{0} \left( \xi \right) +e_{15} b_{0}^{0} \left( \xi \right) }{c_{55} }-\left[ {a_{0}^{0} \left( \xi \right) -a_{0}^{0} \left( 0 \right) } \right] } \right\} } d\xi ,\nonumber \\ f_{16} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left\{ {\frac{e_{15} }{c_{55} }\left[ {f_{0}^{0} \left( \xi \right) +e_{15} b_{0}^{0} \left( \xi \right) } \right] +b_{0}^{0} \left( \xi \right) \lambda _{11} } \right\} } d\xi ,\nonumber \\ f_{17} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left\{ {\frac{e_{15} }{c_{55} }\left[ {h_{0}^{0} \left( \xi \right) +e_{15} f_{0}^{0} \left( \xi \right) } \right] +f_{0}^{0} \left( \xi \right) \lambda _{11} } \right\} } d\xi ,\nonumber \\ f_{18} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left\{ {\frac{e_{15} }{c_{55} }\left[ {h_{1}^{0} \left( \xi \right) +e_{15} f_{1}^{0} \left( \xi \right) } \right] +f_{1}^{0} \left( \xi \right) \lambda _{11} } \right\} } d\xi ,\nonumber \\ k_{31}^{*} \left( z \right)= & {} c_{13} \left[ {F_{1} \left( z \right) +F_{0} } \right] -h_{0}^{1} \left( z \right) , \quad k_{32}^{*} \left( z \right) =e_{31} \left[ {F_{1} \left( z \right) +F_{0} } \right] -f_{17} \left( z \right) ,\nonumber \\ k_{33}^{*} \left( z \right)= & {} c_{13} f_{7} \left( z \right) +f_{0}^{1} \left( z \right) , \quad k_{41}^{*} \left( z \right) =c_{13} \left[ {B_{1} \left( z \right) +B_{0} } \right] +h_{1}^{1} \left( z \right) ,\nonumber \\ k_{42}^{*} \left( z \right)= & {} e_{31} \left[ {B_{1} \left( z \right) +B_{0} } \right] +f_{18} \left( z \right) , \quad k_{44}^{*} \left( z \right) =e_{31} f_{7} \left( z \right) +f_{16} \left( z \right) ,\nonumber \\ B_{1} \left( z \right)= & {} -\int \limits _{-h / 2}^z {\left\{ {\frac{1}{c_{55} }\left[ {h_{1}^{0} \left( \xi \right) +e_{15} f_{1}^{0} \left( \xi \right) } \right] -\left[ {g_{1}^{0} \left( z \right) -g_{1}^{0} \left( 0 \right) } \right] } \right\} } d\xi ,\nonumber \\ C_{1} \left( z \right)= & {} g_{1}^{0} \left( z \right) \quad D_{00} \left( z \right) =\int \limits _{-h / 2}^z {\left[ {\frac{k_{33}^{*} \left( \xi \right) \lambda _{33} +k_{44}^{*} \left( \xi \right) e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right] } d\xi ,\nonumber \\ D_{01} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left[ {\frac{k_{31}^{*} \left( \xi \right) \lambda _{33} +k_{32}^{*} \left( \xi \right) e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right] } d\xi , \quad D_{02} \left( z \right) =\int \limits _{-h / 2}^z {\left[ {\frac{k_{41}^{*} \left( \xi \right) \lambda _{33} +k_{42}^{*} \left( \xi \right) e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right] } d\xi ,\nonumber \\ F_{1} \left( z \right)= & {} -\int \limits _{-h / 2}^z {\left\{ {\frac{1}{c_{55} }\left[ {h_{0}^{0} \left( \xi \right) +e_{15} f_{0}^{0} \left( \xi \right) } \right] -\left[ {g_{0}^{0} \left( \xi \right) -g_{0}^{0} \left( 0 \right) } \right] } \right\} } d\xi ,\nonumber \\ G_{1} \left( z \right)= & {} -g_{0}^{0} \left( z \right) , \quad \phi _{10} \left( z \right) =f_{0}^{0} \left( z \right) , \quad \phi _{20} \left( z \right) =-f_{1}^{0} \left( z \right) , \nonumber \\ \phi _{00} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left[ {\frac{k_{33}^{*} \left( \xi \right) e_{33} -k_{44}^{*} \left( \xi \right) c_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right] } d\xi ,\nonumber \\ \phi _{01} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left[ {\frac{k_{31}^{*} \left( \xi \right) e_{33} -k_{32}^{*} \left( \xi \right) c_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right] } d\xi ,\nonumber \\ \phi _{02} \left( z \right)= & {} \int \limits _{-h / 2}^z {\left[ {\frac{k_{41}^{*} \left( \xi \right) e_{33} -k_{42}^{*} \left( \xi \right) c_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right] } d\xi ,\nonumber \\ \end{aligned}$$
(A-1)
$$\begin{aligned} B_{0}= & {} -k_{2} f_{5} \left( 0 \right) +\Phi _{2} f_{6} \left( 0 \right) -H_{4} f_{7} \left( 0 \right) -B_{1} \left( 0 \right) ,\nonumber \\ C_{0}= & {} -g_{1}^{0} \left( 0 \right) -H_{4} a_{0}^{0} \left( 0 \right) ,\nonumber \\ D_{0}= & {} \kappa _{3} \left[ {D_{00} \left( z \right) H_{2} +D_{01} \left( z \right) } \right] +\kappa _{4} \left[ {D_{00} \left( z \right) H_{4} +D_{02} \left( z \right) } \right] -a_{0}^{0} \left( z \right) H_{7},\nonumber \\ F_{0}= & {} -k_{1} f_{5} \left( 0 \right) +\Phi _{1} f_{6} \left( 0 \right) -H_{2} f_{7} \left( 0 \right) -F_{1} \left( 0 \right) ,\nonumber \\ G_{0}= & {} g_{0}^{0} \left( 0 \right) -H_{2} a_{0}^{0} \left( 0 \right) , \quad \Phi _{0} \text{= }\bar{{\Phi }}_{1} -\left( {\Phi _{2} C_{2} +\Phi _{1} C_{5} } \right) . \end{aligned}$$
(A-2)

Appendix B: Expressions of stress resultants and moments

$$\begin{aligned} N_{x}= & {} \int \limits _{-h/2}^{h/2} {\sigma _{x} dz=} N_{1} \bar{{u}}_{,x} +N_{3} \bar{{w}}_{,xx} +N_{5} \bar{{u}}_{,xxx} +N_{7} \bar{{w}}_{,xxxx} +N_{0} \nonumber \\ M_{x}= & {} \int \limits _{-h/2}^{h/2} {\sigma _{x} zdz} =M_{1} \bar{{u}}_{,x} +M_{3} \bar{{w}}_{,xx} +M_{5} \bar{{u}}_{,xxx} +M_{7} \bar{{w}}_{,xxxx} +M_{0} \nonumber \\ Q_{x}= & {} \int \limits _{-h/2}^{h/2} {\tau _{zx} dz=Q_{1} \bar{{u}}_{,xx} +Q_{2} \bar{{w}}_{,xxx} } \end{aligned}$$
(B-1)

where

$$\begin{aligned} N_{1}= & {} \int \limits _{-h/2}^{h/2} {\left( {c_{11} +c_{13} {G}'+e_{31} \phi _{1}^{\prime }} \right) } dz,N_{3} =\int \limits _{-h/2}^{h/2} {\left( {c_{11} A+c_{13} {C}'+e_{31} \phi _{2}^{\prime }} \right) } dz,\nonumber \\ N_{5}= & {} \int \limits _{-h/2}^{h/2} {c_{11} F} dz,N_{7} =\int \limits _{-h/2}^{h/2} {c_{11} B} dz,N_{0} =\int \limits _{-h/2}^{h/2} {c_{13} {D}'+e_{31} {\phi }'_{0} } dz,\nonumber \\ M_{1}= & {} \int \limits _{-h/2}^{h/2} {z\left( {c_{11} +c_{13} {G}'+e_{31} \phi _{1}^{\prime }} \right) } dz,M_{3} =\int \limits _{-h/2}^{h/2} {z\left( {c_{11} A+c_{13} {C}'+e_{31} \phi _{2}^{\prime }} \right) } dz,\nonumber \\ M_{5}= & {} \int \limits _{-h/2}^{h/2} {c_{11} zF} dz,M_{7} =\int \limits _{-h/2}^{h/2} {c_{11} zB} dz,M_{0} =\int \limits _{-h/2}^{h/2} {\left( {c_{13} {D}'+e_{31} {\phi }'} \right) z} dz,\nonumber \\ Q_{1}= & {} \int \limits _{-h/2}^{h/2} {\left[ {c_{55} \left( {{F}'+G} \right) +e_{15} \phi _{1} } \right] } dz,Q_{2} =\int \limits _{-h/2}^{h/2} {\left[ {c_{55} \left( {{B}'+C} \right) +e_{15} \phi _{2} } \right] } dz, \end{aligned}$$
(B-2)

Appendix C: Expressions of the introduced functions related to variable z and integral constants in electric displacement case

$$\begin{aligned} F_{10} \left( z \right)= & {} \int \limits _{-h/2}^z {\left[ {c_{55} \kappa _{1} -c_{11} -c_{13} {G}'\left( \xi \right) -e_{31} {\phi }'_{1} \left( \xi \right) } \right] } d\xi , \nonumber \\ B_{10} \left( z \right)= & {} \int \limits _{-h/2}^z {\left[ {c_{55} \kappa _{2} -c_{11} A\left( \xi \right) -c_{13} {C}'\left( \xi \right) -e_{31} {\phi }'_{2} \left( \xi \right) } \right] } d\xi ,\nonumber \\ D_{00}= & {} c_{13} \left( {-h / 2} \right) \left[ {\kappa _{3} F\left( {-h / 2} \right) +\kappa _{4} B\left( {-h / 2} \right) } \right] , \nonumber \\ D_{01}= & {} e_{31} \left( {-h / 2} \right) \left[ {\kappa _{3} F\left( {-h / 2} \right) +\kappa _{4} B\left( {-h / 2} \right) } \right] ,\nonumber \\ D_{10} \left( z \right)= & {} \int \limits _{-h/2}^z {\left\{ {\kappa _{3} \left[ {c_{55} \left( {{F}'+G} \right) +\left( {Fc_{13} } \right) ^{\prime }+e_{15} \phi _{1} } \right] +\kappa _{4} \left[ {c_{55} \left( {{B}'+C} \right) +\left( {c_{13} B} \right) ^{\prime }+e_{15} \phi _{2} } \right] } \right\} } d\xi ,\nonumber \\ D_{20} \left( z \right)= & {} \int \limits _{-h/2}^z {\left\{ {\kappa _{3} \left[ {e_{15} \left( {{F}'+G} \right) +\left( {Fe_{31} } \right) ^{\prime }-\lambda _{11} \phi _{1} } \right] +\kappa _{4} \left[ {e_{15} \left( {{B}'+C} \right) +\left( {e_{31} B} \right) ^{\prime }-\lambda _{11} \phi _{2} } \right] } \right\} } d\xi . \end{aligned}$$
(C-1)
$$\begin{aligned} B_{0}= & {} -\int \limits _{-h/2}^0 {\left\{ {\frac{1}{c_{55} }\left[ {B_{10} \left( z \right) -e_{15} \phi _{2} \left( z \right) } \right] -C\left( z \right) } \right\} } dz,\nonumber \\ C_{0}= & {} \int \limits _{-h/2}^0 {\left[ {\frac{\lambda _{33} c_{13} +e_{33} e_{31} }{c_{33} \lambda _{33} +e_{33}^{2} }A\left( z \right) } \right] } dz,\nonumber \\ D_{0}= & {} \int \limits _{-h/2}^0 {\left\{ {\frac{\lambda _{33} \left[ {D_{10} \left( z \right) +D_{00} \left( z \right) } \right] +e_{33} \left[ {D_{20} \left( z \right) +D_{01} \left( z \right) } \right] }{c_{33} \lambda _{33} +e_{33}^{2} }} \right\} } dz,\nonumber \\ F_{0}= & {} -\int \limits _{-h/2}^0 {\left\{ {\frac{1}{c_{55} }\left[ {F_{10} \left( z \right) -e_{15} \phi _{1} } \right] -G\left( z \right) } \right\} } dz, \quad G_{0} =\int \limits _{-h/2}^0 {\left( {\frac{\lambda _{33} c_{13} +e_{33} e_{31} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right) } dz,\nonumber \\ \Phi _{1}= & {} -\int \limits _{-h/2}^0 {\left( {\frac{c_{33} e_{31} -c_{13} e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }} \right) dz}, \quad \Phi _{2} \text{= }-\int \limits _{-h/2}^0 {\left[ {\frac{c_{33} e_{31} -c_{13} e_{33} }{c_{33} \lambda _{33} +e_{33}^{2} }A\left( z \right) } \right] dz},\nonumber \\ \Phi _{0}= & {} -\int \limits _{-h/2}^0 {\left\{ {\frac{c_{33} \left[ {D_{20} \left( z \right) +D_{01} \left( z \right) } \right] -e_{33} \left[ {D_{10} \left( z \right) +D_{00} \left( z \right) } \right] }{c_{33} \lambda _{33} +e_{33}^{2} }} \right\} } dz. \end{aligned}$$
(C-2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Shen, Y., Cai, F. et al. Elasticity solutions of functionally graded piezoelectric plates under electric fields in cylindrical bending. Z. Angew. Math. Phys. 74, 158 (2023). https://doi.org/10.1007/s00033-023-02032-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02032-7

Keywords

Mathematics Subject Classification

Navigation