Skip to main content
Log in

Asymptotic stability of a nonlinear wave for an outflow problem of the bipolar Navier–Stokes–Poisson system under large initial perturbation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the time-asymptotic behavior of solutions to an outflow problem for the one-dimensional bipolar Navier–Stokes–Poisson system in the half space. First, we make some suitable assumptions on the boundary data and space-asymptotic states such that the time-asymptotic state of the solution is a nonlinear wave, which is the superposition of the transonic stationary solution and the 2-rarefaction wave. Next, we show the stability of this nonlinear wave under a class of large initial perturbation, provided that the strength of the transonic stationary solution is small enough, while the amplitude of the 2-rarefaction wave can be arbitrarily large. The proof is completed by a delicate energy method and a continuation argument. The key point is to derive the positive upper and lower bounds of the particle densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable because the article describes entirely theoretical research.

References

  1. Anile, A.M., Pennisi, S.: Thermpdynamic derivation of the hydrodynamic model for charge transport in semiconductors. Phys. Rev. B 46, 13186–13193 (1992)

    Article  MATH  Google Scholar 

  2. Bian, D.F., Fan, L.L., He, L., Zhao, H.J.: Viscous shock wave to an inflow problem for compressible viscous gas with large density oscillations. Acta Math. Appl. Sin. Engl. Ser. 35, 129–157 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cui, H.B., Gao, Z.S., Yin, H.Y., Zhang, P.X.: Stationary waves to the two-fluid non-isentropic Navier–Stokes–Poisson system in a half line: existence, stability and convergence rate. Discrete Contin. Dyn. Syst. 26, 4839–4870 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, H., Tan, Z.: Asymptotic stability of stationary solutions to the compressible bipolar Navier–Stokes–Poisson equations. Math. Meth. Appl. Sci. 40, 4493–4513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, R.J., Liu, S.Q.: Stability of rarefaction waves of the Navier–Stokes–Poisson system. J. Diff. Equ. 258, 2495–2530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, R.J., Yang, X.F.: Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier–Stokes–Poisson equations, Commun. Pure. Appl. Anal. 12, 985–1014 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Degond, P.: Mathematical modelling of microelectronics semiconductor devices. In: Some Current Topics on Nonlinear Conservation Laws, Studies in Advanced Mathematics, vol. 15 (Amer. Math. Soc.), pp. 77–110 (2000)

  8. Fan, L.L., Liu, H.X., Wang, T., Zhao, H.J.: Inflow problem for the one-dimensional compressible Navier–Stokes equations under large initial perturbation. J. Diff. Equ. 257, 3521–3553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong, H., Shi, X.D., Wang, T.: Stability of stationary solutions to the inflow problem for the two-fluid non-isentropic Navier–Stokes–Poisson system. J. Diff. Equ. 265, 1129–1155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hong, H., Kim, J., Choe, K.: Stationary solutions of outflow problem for full compressible Navier–Stokes–Poisson system: existence, stability and convergence rate. Commun. Math. Sci. 19, 2195–2215 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong, H., Wang, T.: Large-time behavior of solutions to the inflow problem of full compressible Navier–Stokes equations with large perturbation. Nonlinearity 30, 3010–3039 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, F.M., Matsumura, A., Shi, X.D.: Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas. Comm. Math. Phys. 239, 261–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, F.M., Matsumura, A., Shi, X.D.: A gas-solid free boundary problem for a compressible viscous gas. SIAM J. Math. Anal. 34, 1331–1355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, F.M., Qin, X.H.: Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier–Stokes equations under large perturbation. J. Diff. Equ. 246, 4077–4096 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, L.: Global wellposedness and large time behavior of solutions for certain compressible Navier–Stokes type equations with large initial perturbation (in Chinese), Ph.D thesis, Wuhan University, (2017)

  16. Jüngel, A.: Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations, Birkhäuser (2001)

  17. Kawashima, S., Nishibata, S., Zhu, P.C.: Asymptotic stability of the stationary solution to the compressible Navier–Stokes equations in the half space. Comm. Math. Phys. 240, 483–500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawashima, S., Nakamura, T., Nishibata, S., Zhu, P.C.: Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate. Math. Models Methods Appl. Sci. 12, 2201–2235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kawashima, S., Zhu, P.C.: Asymptotic stability of nonlinear wave for the compressible Navier–Stokes equations in the half space. J. Diff. Equ. 244, 3151–3179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kawashima, S., Zhu, P.C.: Asymptotic stability of rarefaction wave for the Navier–Stokes equations for a compressible fluid in the half space. Arch. Ration. Mech. Anal. 194, 105–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanel’, J.I.: A model system of equations for the one-dimensional motion of a gas. Differ. Uravn. 4, 721–734 (1968). (in Russian)

    MathSciNet  Google Scholar 

  22. Li, H.L., Yang, T., Zou, C.: Time asymptotic behavior of the bipolar Navier–Stokes–Poisson system. Acta Math. Sci. 29, 1727–1736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H.L., Matsumura, A., Zhang, G.J.: Optimal decay rate of the compressible Navier–Stokes–Poisson system in \(\mathbb{R} ^3\). Arch. Ration. Mech. Anal. 196, 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y.P., Zhu, P.C.: Asymptotics towards a nonlinear wave for an outflow problem of a model of viscous ions motion. Math. Models Methods Appl. Sci. 27, 2111–2145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Markowich, P.A., Ringhofev, C.A., Schmeiser, C.: Semiconductor equations. Springer-Verlag, Wien, New York (1990)

    Book  Google Scholar 

  26. Matsumura, A.: Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Methods Appl. Anal. 8, 645–666 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matsumura, A., Nishihara, K.: Large-time behavior of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas. Comm. Math. Phys. 222, 449–474 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Qin, X.H., Wang, Y.: Stability of wave patterns to the inflow problem of full compressible Navier–Stokes equations. SIAM J. Math. Anal. 41, 2057–2087 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qin, X.H., Wang, Y.: Large-time behavior of solutions to the inflow problem of full compressible Navier–Stokes equations. SIAM J. Math. Anal. 43, 341–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tan, Z., Wang, Y.J., Wang, Y.: Stability of steady states of the Navier–Stokes–Poisson equations with non-flat doping profile. SIAM J. Math. Anal. 47, 179–209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tan, Z., Yang, T., Zhao, H.J., Zou, Q.Y.: Global solutions to the one-dimensional compressible Navier–Stokes–Poisson equations with large data. SIAM J. Math. Anal. 45, 547–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, W.K., Xu, X.: The decay rate of solution for the bipolar Navier–Stokes–Poisson system. J. Math. Phys. 55, 091502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, Z.G., Wang, W.K.: Pointwise estimates for bipolar compressible Navier–Stokes–Poisson system in dimension three. Arch. Ration. Mech. Anal. 226, 587–638 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, G.C., Zhang, Y.H., Zhang, A.Z.: Global existence and time decay rates for the 3D bipolar compressible Navier–Stokes–Poisson system with unequal viscosities. Sci. China Math. 65, 731–752 (2022)

    Article  MathSciNet  Google Scholar 

  36. Wan, L., Wang, T., Zou, Q.Y.: Stability of stationary solutions to the outflow problem for full compressible Navier–Stokes equations with large initial perturbation. Nonlinearity 29, 1329–1354 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wan, L., Wang, T., Zhao, H.J.: Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half space. J. Diff. Equ. 261, 5949–5991 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yin, H.Y., Zhang, J.S., Zhu, C.J.: Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier–Stokes–Poisson system. Nonlinear Anal. Real World Appl. 31, 492–512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, Z.Y., Li, Y.P.: Global existence and optimal decay rate of the compressible bipolar Navier–Stokes–Poisson equations with external force. Nonlinear Anal. Real World Appl. 16, 146–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, L., Zhao, H.J., Zhao, Q.S.: Stability of rarefaction waves of the compressible Navier–Stokes–Poisson system with large initial perturbation. SIAM J. Math. Anal. 54, 4536–4571 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, F., Li, Y.P.: Convergence rate of solutions toward stationary solutions to the bipolar Navier–Stokes–Poisson equations in a half line. Bound. Value Probl. 124, 22 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Wu would like to express his gratitude to Prof. Lin He for his helpful suggestions. Wu and Zhu are supported in part by Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1413600).

Author information

Authors and Affiliations

Authors

Contributions

QW wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Peicheng Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Hou, X. & Zhu, P. Asymptotic stability of a nonlinear wave for an outflow problem of the bipolar Navier–Stokes–Poisson system under large initial perturbation. Z. Angew. Math. Phys. 74, 146 (2023). https://doi.org/10.1007/s00033-023-02029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02029-2

Keywords

Mathematics Subject Classification

Navigation