Skip to main content
Log in

Acoustic black hole in a hyperelastic rod

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

It is revealed that a hyperelastic material with smooth variation of elastic properties with strain, may serve as an acoustic black hole in respect of harmonic elastic waves. The analysis comprises theoretical method based on thermodynamic analysis, Cauchy formalism, coupled with numerical method utilizing Lax–Wendroff explicit numerical scheme in time domain and finite element discretization in spatial domain. The observed phenomena elucidate the appearance of ABH in hyperelastic media and may be indispensible for development of new types of vibration and shock absorbers, which result in mechanical energy attenuation in a purely elastic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aklouche, O., Pelat, A., Maugeais, S., Gautier, F.: Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate. J. Sound Vib. 375, 38–52 (2016)

    Google Scholar 

  2. Ambartsumyan, S.A.: The basic equations and relations of the different-modulus theory of elasticity of an anisotropic body. Mech. Solids 4(3), 48–56 (1969)

    Google Scholar 

  3. Arruda, E.M., Boyce, M.C.: A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    MATH  Google Scholar 

  4. Avesth, P., Mukerji, T., Mavko, G.: Quantitative Seismic Interpretation. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  5. Bayliss, A., Turkel, E.: Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 33, 707–725 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Belytschko, T., et al.: Hourglass control in linear and nonlinear problems. Comp. Methods Appl. Mech. Eng. 43(3), 251–276 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Ben-Menahem, A., Singh, S.J.: Seismic Waves and Sources. Springer, Berlin (1981)

    MATH  Google Scholar 

  8. Bergstrom, J.S., Boyce, M.C.: Deformation of elastomeric networks: relation between molecular level deformation and classical statistical mechanics models of rubber elasticity. Macromolecules 34(3), 614–626 (2001)

    Google Scholar 

  9. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73(3), 504–523 (2000)

    Google Scholar 

  10. Brun, M., et al.: Hybrid asynchronous perfectly matched layer for seismic wave propagation in unbounded domains. Finite Elem. Anal. Des. 122, 1–15 (2016)

    MathSciNet  Google Scholar 

  11. Cangiani, A., et al.: Hourglass stabilization and the virtual element method. Int. J. Numer. Methods Eng. 102(3–4), 404–436 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Clayton, R., Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am. 67(6), 1529–1540 (1977)

    Google Scholar 

  14. Cohen, A.: A Padé approximant to the inverse Langevin function. Rheol. Acta 30(3), 270–273 (1991)

    Google Scholar 

  15. Dequiedt, J.L., Stolz, C.: Propagation of a shock discontinuity in an elasto-plastic material: constitutive relations. Arch. Mech. 56(5), 391–410 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Djeran-Maigre, I., et al.: Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoust. Phys. 60(2), 200–207 (2014)

    Google Scholar 

  17. Du, Z.L., et al.: A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int. J. Solids Struct. 100–101, 54–73 (2016)

    Google Scholar 

  18. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31, 629–652 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Ericksen, J.L.: On the propagation of waves in isotropic incomprerssible perfectly elastic materials. J. Rational Mech. Anal. 2, 329–337 (1953)

    MathSciNet  MATH  Google Scholar 

  20. Fletcher, C.A.J.: Comparison of finite-difference, finite-element, and spectral methods. In: Computational Galerkin Methods. Springer Series in Computational Physics, pp. 225–245. Springer, Berlin (1984)

  21. Fu, Y.B., Scott, N.H.: The evolution law of one-dimensional weak nonlinear shock waves in elastic nonconductors. Quart. J. Mech. Appl. Math. 42(1), 23–39 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Fu, Y.B., Scott, N.H.: The evolution laws of dilatational spherical and cylindrical weak nonlinear shock waves in elastic non-conductors. Arch. Rational Mech. Anal. 108, 11–34 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Fu, Y.B., Scott, N.H.: One-dimensional shock waves in simple materials with memory. Proc. Roy. Soc. London. Ser. A Math. Phys. Sci 428(1875), 547–571 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Gavrilov, S.N., Herman, G.C.: Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. J. Sound Vib. 331(20), 4464–4480 (2012)

    Google Scholar 

  25. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Tech. 69, 59–61 (1996)

    MathSciNet  Google Scholar 

  26. Givoli, D., Keller, J.B.: Non-reflecting boundary conditions for elastic waves. Wave Motion 12(3), 261–279 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Givoli, D.: Non-reflecting boundaries: high-order treatment. In: Givoli, D., Grote, M.J., Papanicolaou, G.C. (eds.) A Celebration of Mathematical Modeling. Springer, Dordrecht (2004)

    Google Scholar 

  28. Goldstein, R.V., et al.: The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading. Arch. Appl. Mech. 86(12), 2021–2031 (2016)

    Google Scholar 

  29. Goldstein, R.V., et al.: Long-wave asymptotics of Lamb waves. Mech. Solids 52(6), 700–707 (2017)

    Google Scholar 

  30. Häggblad, B., Sundberg, J.A.: Large strain solutions of rubber components. Comput. Struct. 17, 835–843 (1983)

    Google Scholar 

  31. Hook, K., Cheer, J., Daley, S.: Control of vibration in a plate using active acoustic black holes. Smart Mater. Struct. 31(3), 035033 (2022)

    Google Scholar 

  32. Horgan, C.O., Saccomandi, G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68(1), 167–176 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Hu, X., Ng, C.-T., Kotousov, A.: Numerical and experimental investigations on mode conversion of guided waves in partially immersed plates. Measurement 190, 110750 (2022)

    Google Scholar 

  34. Ilyashenko, A.V., et al.: Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media. Russ. J. Nondestruct. Test. 53, 243–259 (2017)

    Google Scholar 

  35. Ilyashenko, A.V., et al.: Pochhammer–Chree waves: polarization of the axially symmetric modes. Arch. Appl. Mech. 88, 1385–1394 (2018)

    Google Scholar 

  36. Jones, R.M.: Stress-strain relations for materials with different moduli in tension and compression. AIAA J. 15(1), 16–23 (1977)

    Google Scholar 

  37. Kaliske, M., Rothert, H.: On the finite element implementation of rubber-like materials at finite strains. Eng. Comput. 14(2), 216–232 (1997)

    MATH  Google Scholar 

  38. Khanna, G.: High-precision numerical simulations on a CUDA GPU: Kerr black hole tails. J. Sci. Comput. 56(2), 366–380 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Kravtsov, A.V., et al.: Finite element models in Lamb’s problem. Mech. Solids 46, 952–959 (2011)

    Google Scholar 

  40. Krylov, V.V.: Acoustic black holes for flexural waves: a smart approach to vibration damping. Proc. Eng. 199, 56–61 (2017)

    Google Scholar 

  41. Kuznetsov, S.V.: Fundamental and singular solutions of Lamé equations of media with arbitrary anisotropy. Quart. Appl. Math. 63(3), 455–467 (2005)

    MathSciNet  Google Scholar 

  42. Kuznetsov, S.V.: Seismic waves and seismic barriers. Acoust. Phys. 57(3), 420–426 (2011)

    Google Scholar 

  43. Kuznetsov, S.V.: Abnormal dispersion of flexural Lamb waves in functionally graded plates. Zeit. Angew. Math. Phys. 70(3), 89 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Kuznetsova, M., Khudyakov, M., Sadovskii, V.: Wave propagation in continuous bimodular media. Mech. Adv. Mater. Struct. 29(21), 3147–3162 (2022)

    Google Scholar 

  45. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1972)

    Google Scholar 

  46. Li, D., et al.: Evaluation of bi-modular behavior of rocks subjected to uniaxial compression and Brazilian tensile testing. Rock Mech. Rock Eng. 54, 3961–3975 (2021)

    Google Scholar 

  47. Li, H., et al.: A vibro-impact acoustic black hole for passive damping of flexural beam vibrations. J. Sound Vib. 450(23), 28–46 (2019)

    Google Scholar 

  48. Li, S., et al.: Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains. Comput. Geotech. 109(1), 69–81 (2019)

    Google Scholar 

  49. Li, S., et al.: Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier. Eur. J. Environ. Civil Eng. 24(14), 2400–2421 (2020)

    Google Scholar 

  50. Li, S., et al.: Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers. Comput. Geotech. 131, 103808 (2021)

    Google Scholar 

  51. Lucchesi, M., Pagni, A.: Longitudinal oscillations of bimodular rods. Int. J. Struct. Stabil. Dyn. 5(1), 37–54 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)

    Google Scholar 

  53. Medri, G.: A nonlinear elastic model for isotropic materials with different behavior in tension and compression. ASME J. Eng. Mater. Technol. 104(1), 26–28 (1982)

    Google Scholar 

  54. Mironov, M.: Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Sov. Phys. Acoust. 34, 318–319 (1988)

    Google Scholar 

  55. Mori, A., et al.: Compression behaviour of bridge bearings used for seismic isolation. Eng. Struct. 18(5), 351–362 (1996)

    Google Scholar 

  56. Naeeni, M.R., Eskandari-Ghadi, M., Ardalan, A.A., Pak, R.Y.S., Rahimian, M., Hayati, Y.: Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space. Z. Angew. Math. Mech. 95, 260–282 (2015)

    MathSciNet  MATH  Google Scholar 

  57. O’Boy, D.J., Krylov, V.V., Kralovic, V.: Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. J. Sound Vib. 329(22), 4672–4688 (2010)

    Google Scholar 

  58. Ogden, R.W.: Non-Linear Elastic Deformations. Dover, New York (1984)

    MATH  Google Scholar 

  59. Oh, J., Kim, J.H., Yi, H.C.: Effects of thermal aging of laminated rubber bearing on seismic performance of bridges. J. Vibroeng. 18(6), 3782–3797 (2016)

    Google Scholar 

  60. Pelat, A., Gautier, F., Conlon, S.C., Semperlotti, F.: The acoustic black hole: a review of theory and applications. J. Sound Vibr. 476, 115316 (2020)

    Google Scholar 

  61. Rickaby, S.R., Scott, N.H.: A comparison of limited-stretch models of rubber elasticity. Int. J. Non-Linear Mech. 68, 71–86 (2015)

    Google Scholar 

  62. Sadoulet-Reboul, E., Matten, G., Yi, K., Ouisse, M.: Passive discrete lens for broadband elastic guided wave focusing. J. Theor. Comp. Appl. Mech. Pap. (2021)

  63. Tang, L., et al.: Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model. J. Sound Vib. 374, 172–184 (2016)

    Google Scholar 

  64. Tang, L., Cheng, L.: Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes. J. Appl. Phys. 121, 194901 (2017)

    Google Scholar 

  65. Tang, Y., et al.: Dynamic characteristic analysis of acoustic black hole in typical raft structure. Rev. Adv. Mater. Sci. 61(1), 458–476 (2022)

    Google Scholar 

  66. Tezuka, A.: Finite element and finite difference methods. In: Czichos, H., Saito, T., Smith, L. (eds.) Springer Handbook of Materials Measurement Methods, pp. 973–1000. Springer, Berlin (2006)

    Google Scholar 

  67. Thomée, V.: The finite difference versus the finite element method for the solution of boundary value problems. Bull. Austr. Math. Soc. 29(2), 267–288 (1984)

    MathSciNet  MATH  Google Scholar 

  68. Ting, L., Miksis, M.J.: Exact boundary conditions for scattering problems. J. Acoust. Soc. Am. 80, 1825–1827 (1986)

    Google Scholar 

  69. Truesdell, C.: General and exact theory of waves in finite elastic strain. Arch. Rat. Mech. Anal. 8, 263–296 (1961)

    MathSciNet  MATH  Google Scholar 

  70. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004)

    MATH  Google Scholar 

  71. Wex, C., et al.: Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. Biomed. Tech. 60(6), 577–592 (2015)

    Google Scholar 

  72. Xu, Z., Shu, C.-W.: Third order maximum-principle-satisfying and positivity-preserving Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws. J. Comput. Phys. 470, 111591 (2022)

    MathSciNet  MATH  Google Scholar 

  73. Zafati, E., et al.: Design of an efficient multi-directional explicit/implicit Rayleigh absorbing layer for seismic wave propagation in unbounded domain using a strong form formulation. Int. J. Numer. Methods Eng. 106, 83–112 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Zemanek, J.: An experimental and theoretical investigation of elastic wave propagation in a cylinder. J. Acoust. Soc. Am. 51, 265–283 (1972)

    MATH  Google Scholar 

  75. Zhao, C., Zhang, T., How, G.X.: Finite-difference time-domain modeling for underwater acoustic scattering applications based on immersed boundary method. Appl. Acoust. 193, 108764 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I am the only author.

Corresponding author

Correspondence to Sergey V. Kuznetsov.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Acoustic black hole in a hyperelastic rod. Z. Angew. Math. Phys. 74, 122 (2023). https://doi.org/10.1007/s00033-023-02020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02020-x

Keywords

Mathematics Subject Classification

Navigation