Skip to main content
Log in

Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a higher-dimensional singular chemotaxis-growth system with indirect signal production. Under appropriate regularity assumption on the initial data, the global boundedness of classical solution is obtained. Our results improve and complement previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Kang, K., Lee, J.: Eventual smoothness and stabilization of global weak solutions in parabolic-elliptic chemotaxis systems with logarithmic sensitivity. Nonlinear Anal. Real World Appl. 49, 312–330 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Ahn, J., Kang, K., Lee, J.: Global well-posedness of logarithmic Keller–Segel type systems. J. Differ. Equ. 287, 185–211 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Biler, P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9, 347–359 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Black, T.: Global generalized solutions to a parabolic-elliptic Keller–Segel system with singular sensitivity. Discrete Contin. Dyn. Syst. S 13(2), 119–137 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Chaplain, M., Stuart, A.: Amodel mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor. IMA. J. Math. Appl. Med. Biol. 10, 149–168 (1993)

    MATH  Google Scholar 

  7. Ding, M., Wang, W., Zhou, S.: Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source. Nonlinear Anal. Real Word Appl. 49, 286–311 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Dong, Y., Peng, Y.: Global boundedness in the higher-dimensional chemotaxis system with indirect signal production and rotational flux. Appl. Math. Lett. 112, 106700 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Friedman, A.: Partial Differential Equations. Rinehart & Winston Holt, New York (1969)

    MATH  Google Scholar 

  10. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substance chemotaxis system. J. Differ. Equ. 263, 88–148 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. Nonlinearity 31, 1639–1672 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic-elliptic Keller–Segel system with singular sensitivity. Nonlinear Anal. 109, 56–71 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Fujie, K., Winkler, M., Yokota, T.: Boundedness of solutions to parabolic-elliptic Keller–Segel systems with signal-dependent sensitivity. Math. Methods Appl. Sci. 38, 1212–1224 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Fujie, K., Yokota, T.: Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity. Appl. Math. Lett. 38, 140–143 (2014)

    MathSciNet  MATH  Google Scholar 

  16. He, Q., Zhao, J., Xiao, M.: Large time behavior of solution to a fully parabolic chemotaxis system with singular sensitivity and logistic source. Nonlinear Anal. Real World Appl. 69, 103746 (2023)

    MathSciNet  MATH  Google Scholar 

  17. Hillen, T., Painter, K.J.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Methods Appl. Sci. 1, 165–198 (2013)

    MathSciNet  MATH  Google Scholar 

  18. H\(\ddot{o}\)fer, H., Sherratt, J., Maini, P.: Cellular pattern formation during Dictyostelium aggregation. Phys. D 85, 425–444 (1995)

  19. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Hu, B., Tao, Y.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Keller, E., Segel, L.: Initiation of slime mold aagregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MATH  Google Scholar 

  22. Keller, E., Segel, L.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30(2), 235–248 (1971)

    MATH  Google Scholar 

  23. Kurt, H.I., Shen, W.: Finite-time blow-up prevention by logistic source in chemotaxis models with singular sensitivity in any dimensional setting. SIAM J. Math. Anal. 53(1), 973–1003 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 39, 394–404 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differ. Equ. Appl. 24, 49 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Li, H., Tao, Y.: Boundedness in a chemotaxis system with indirect signal production and generalized logistic source. Appl. Math. Lett. 77, 108–113 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Liu, C., Liu, B.: Boundedness and asymptotic behavior in a predator–prey model with indirect pursuit–evasion interaction. Discrete Contin. Dyn. Syst. B 27(9), 4855–4874 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Liu, C., Liu, B.: Boundedness in a quasilinear two-species chemotaxis system with nonlinear sensitivity and nonlinear signal secretion. J. Differ. Equ. 320, 206–246 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Li, Z., Huang, J.: Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption. J. Differ. Equ. 269, 6365–6399 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Mizukami, M., Yokota, T.: A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity. Math. Nachr. 290, 2648–2660 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Murray, J.: Mathematical Biology I: An Introduction, 3rd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  32. Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8, 145–156 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Petter, G., Byrne, H., Mcelwain, D., Norbury, J.: A model of wound healing and angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (2003)

    MATH  Google Scholar 

  35. Ren, G., Liu, B.: A new result for global solvability in a singular chemotaxis-growth system with indirect signal production. J. Differ. Equ. 337, 363–394 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Ren, G., Liu, B.: Boundedness in a chemotaxis system under a critical parameter condition. Bull. Braz. Math. Soc. New Ser. 52, 281–289 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Senba, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equ. 263, 88–148 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real Word Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Tao, Y., Winkler, M.: Persistence of mass in a chemotaxis system with logistic source. J. Differ. Equ. 259, 6142–6161 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Tian, Y., Li, D., Mu, C.: Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production. C. R. Acad. Sci. Paris Ser. Math. 357, 513–519 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal. Real World Appl. 34, 520–535 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Viglialoro, G., Woolley, T.: Eventual smoothness and asymptotic behavior of solutions to a chemotaxis system perturbed by a logistic growth. Discrete Contin. Dyn. Syst. B 23(8), 3023–3045 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MATH  Google Scholar 

  46. Winkler, M.: Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. Discrete Contin. Dyn. Syst. B 27(11), 6565–6587 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348(2), 708–729 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Winkler, M.: Unlimited growth in logarithmic Keller–Segel systems. J. Differ. Equ. 309, 74–97 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Winkler, M., Yokota, T.: Stabilization in the logarithmic Keller–Segel system. Nonlinear Anal. 170, 123–141 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Xiang, T.: How strong a logistic damping can prevent blow-up for the minial Keller–Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Xing, J., Zheng, P., Xiang, Y., Wang, H.: On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption. Z. Angew. Math. Phys. 72, 105 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal. Real World Appl. 50, 484–497 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Zhao, J.: A quasilinear parabolic–parabolic chemotaxis model with logistic source and singular sensitivity. Discrete Contin. Dyn. Syst. B 27(6), 3487–3513 (2022)

    MathSciNet  MATH  Google Scholar 

  58. Zhao, X., Zheng, S.: Global boundedness to a chemotaxis system with singular sensitivity and logistic source. Z. Angew. Math. Phys. 68, 2 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Zhao, X., Zheng, S.: Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source. J. Differ. Equ. 267, 826–865 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Zheng, J., Bao, G.: Boundedness and large time behavior in a higher-dimensional Keller–Segel system with singular sensitivity and logistic source, preprint. arXiv:1812.02355v4

  61. Zheng, P., Mu, C., Willie, R., Hu, X.: Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity. Comput. Math. Appl. 75, 1667–1675 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the anonymous reviewers and editors for their valuable comments and suggestions which led to the improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by NNSF of China (No. 12231008).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ren, G. & Liu, B. Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production. Z. Angew. Math. Phys. 74, 119 (2023). https://doi.org/10.1007/s00033-023-02017-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02017-6

Keywords

Mathematics Subject Classification

Navigation