Skip to main content
Log in

Global existence and exponential stability of solutions for thermodiffusion equations of type III

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider an initial boundary value problem for the one-dimensional thermodiffusion equations of type III. By the semigroup approach and the energy method, we establish the global existence and exponential stability for the solutions in a bounded region. The main work of this paper is to extend the study of thermodiffusion equations to the model of type III, which can be used as a reference for the study of other types of partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouadi, M.: Asymptotic behavior in nonlocal Mindlin’s strain gradient thermoelasticity with voids and microtemperatures. J. Math. Anal. Appl. 514, 126268 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, X., Li, Y.: Structural stability on the boundary coefficient of the thermoelastic equations of Type III. Mathematics 10, 366 (2022)

    Article  Google Scholar 

  3. Fichera, G.: Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid. Arch. Ration. Mech. Anal. 26, 903–920 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Gawinecki, J.A.: Local existence of the solution to the initial-boundary value problem in nonlinear thermodiffusion in micropolar medium. Z. Anal. Anwe. 19, 429–451 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gawinecki, J.A., Ortner, N., Wagner, P.: On the fundamential solution of the operator of dynamic linear thermodiffusion. Z. Anal. Anwe. 15, 149–158 (1996)

    Article  MATH  Google Scholar 

  6. Gawinecki, J.A., Sierpinski, K.: Existence, uniqueness and regularity of the solution of the first boundary-initial value problem for the equation of the thermodiffusion in a solid body. Bull. Acad. Pol. Sci. Sér. Sci. Tech. 30, 541–547 (1982)

  7. Gawinecki, J.A., Wagner, P.: On the fundamental matrix of the system describing linear thermodiffusion in the theory of thermal stresses. Bull. Acad. Pol. Sci. Sér. Sci. Tech. 39, 609–615 (1991)

  8. Green, A.E., Naghdi, P.E.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 235–264 (1992)

    Article  MathSciNet  Google Scholar 

  9. Green, A.E., Naghdi, P.E.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hao, J.H., Wang, P.P.: General decay result for thermoelastic beam equation system with time-varying delay. Appl. Math. Comput. 334, 168–173 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Jachmann, K.: A Unified Treatment of Models of Thermoelasticity. Doctoral Thesis, TU Bergakademie Freiberg (2008)

  12. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, S., Racke, R.: Evolution Equations in Thermoelasticity. CRC, Boca Raton (2000)

  14. Liu, Y., Chen, W.H.: Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. Z. Angew. Math. Phys. 71, 55 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Y., Qin, X.L., Zhang, S.H.: Global existence and estimates for Blackstock’s model of thermoviscous flow with second sound phenomena. J. Differ. Equ. 324, 76–101 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Mechanics of Continuous Media, 2nd ed. Russian Gostekhisdat, Moscow (1953)

  17. Liu, Z.Y., Zheng, S.M.: Semigroups Associated with Dissipative Systems. CRC, Boca Raton (1999)

  18. Liu, Y., Reissig, M.: Models of thermo-diffusion in 1D. Math. Methods Appl. Sci. 37, 817–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moraes, R.A., Schulz, F.G., Soriano, J.A.: Exact controllability for a thermodiffusion system with locally distributed controls. J. Differ. Equ. 264, 4152–4175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nowacki, W.: Certain problem of thermodiffusion in solids. Arch. Mech. 23, 731–754 (1971)

    MathSciNet  MATH  Google Scholar 

  21. Nowacki, W.: Dynamical problem of thermodiffusion in solids II. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 22, 205–211 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Podstrigach, Y.S.: Differential equations of the problem of thermodiffusion in an isotropic deformable solid. Dopov. Akad. Nank. Ukr. RSR 66, 162–172 (1961)

  23. Qin, Y.M., Zhang, M., Feng, B.W., Li, H.Y.: Global existence and asymptotic behavior of solutions for thermodiffusion equations. J. Math. Anal. Appl. 408, 140–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qin, Y.M., Zhang, M., Feng, B.W., Li, H.Y.: Uniform attractors for non-autonomous thermodiffusion equations. J. Abstr. Differ. Equ. Appl. 3, 76–91 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Quintanilla, R., Racke, R.: Stability in thermoelasticity of type III. Disc. Contin. Dyna. Syst. Ser. B 3, 383–400 (2003)

  26. Racke, R.: Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d. Math. Methods Appl. Sci. 25, 409–441 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reissig, M., Wang, Y.G.: Cauchy problems for linear thermoelastic systems of type III in one space variable. Math. Methods Appl. Sci. 28, 1359–1381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szymaniec, A.: Global Solution to the Initial-Value Problem to the Nonlinear Thermodiffusion in a Solid Body. Doctoral Thesis, Warsaw Univ. Technology, Warsaw (2003)

  29. Szymaniec, A.: \(L^p\)\(L^q\) time decay estimates for the solution of the linear partial differential equations of thermodiffusion. Appl. Math. 37, 143–170 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Szymaniec, A.: Global solution to the Cauchy problem of nonlinear thermodiffusion in a solid body. Appl. Math. 37, 437–458 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Wang, S., Wang, Y.: The Global well-posedness for large amplitude smooth solutions for 3D incompressible Navier–Stokes and Euler equations based on a class of variant spherical coordinates. Mathematics 8, 1195 (2020)

    Article  Google Scholar 

  32. Zhang, M., Qin, Y.M.: Global existence and uniform decay for the one-dimensional model of thermodiffusion with second sound. Bound. Value Probl. 2013, 222 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, S.M.: Nonlinear Evolution Equations. CRC, Boca Raton (2004)

Download references

Acknowledgements

The author would like to thank the editors and reviewers for their valuable comments to improve the manuscript.

Funding

This research received no external funding except the support from the signing institutions.

Author information

Authors and Affiliations

Authors

Contributions

MZ wrote all the manuscript text. The author reviewed the manuscript.

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M. Global existence and exponential stability of solutions for thermodiffusion equations of type III. Z. Angew. Math. Phys. 74, 113 (2023). https://doi.org/10.1007/s00033-023-02006-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02006-9

Keywords

Mathematics Subject Classification

Navigation