Skip to main content
Log in

Convergence of the Navier–Stokes–Maxwell system to the Euler–Maxwell system near constant equilibrium

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a justification of the vanishing viscosity limit of the compressible Navier–Stokes–Maxwell system in the whole space. With suitable initial data, we rigorously prove that there exists a sequence of unique smooth solutions of the Navier–Stokes–Maxwell system which converges to the given smooth solution of the Euler–Maxwell system near constant equilibrium when the viscosity coefficients tend to zero. Moreover, a uniform convergence rate is obtained in terms of the viscosity coefficients. As a byproduct, a similar result for the compressible Navier–Stokes–Poisson system is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chikami, N., Danchin, R.: On the global existence and time decay estimates in critical spaces for the Navier–Stokes–Poisson system. Math. Nachr. 290(13), 1939–1970 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, G.Q., Feldman, M.: The Mathematics of Shock Reflection–Diffraction and Von Neumann’s Conjectures, Research Monograph, Annals of Mathematics Studies, 197. Princeton University Press, Princeton (2018)

    Google Scholar 

  3. Chen, G.Q., He, L., Wang, Y., Yuan, D.F.: Global solutions of the compressible Euler–Poisson equations with large initial data of spherical symmetry. https://doi.org/10.48550/arXiv.2101.03597

  4. Chen, G.Q., Perepelista, M.: Vanishing viscosity limit of the Navier–Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63, 1469–1504 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G.Q., Wang, Y.: Global solutions of the compressible Euler equations with large initial data of spherical symmetry and positive far-field density. Arch. Ration. Mech. Anal. 243(3), 1699–1771 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  7. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  8. Deng, Y., Ionescu, A.D., Pausader, B.: The Euler–Maxwell system for electrons: global solutions in 2D. Arch. Ration. Mech. Anal. 225(2), 771–871 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, X., Chen, G.Q., Luo, P.: Convergence of the Lax–Friedrichs scheme for the isentropic gas dynamics (I)–(II). Acta Math. Sci. 5B(483–500), 501–540 (1985). ((in English))

    MathSciNet  MATH  Google Scholar 

  10. DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1–30 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duan, R.-J.: Green’s function and large time behavior of the Navier–Stokes–Maxwell system. Anal. Appl. 10(2), 133–197 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, Y.H., Li, X., Wang, S.: Stability of non-constant equilibrium solutions for the full compressible Navier–Stokes–Maxwell system. J. Math. Fluid Mech. 23(1), 17 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, Y.H., Li, X., Mei, M., Wang, S., Cao, Y.C.: Convergence to steady-states of compressible Navier–Stokes–Maxwell equations. J. Nonlinear Sci. 32(1), 2 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, Y.H., Peng, Y.J., Wang, S.: Asymptotic behavior of global smooth solutions for full compressible Navier–Stokes–Maxwell equations. Nonlinear Anal. Real World Appl. 19, 105–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Germain, P., Masmoudi, N.: Global existence for the Euler–Maxwell system. Ann. Sei. É c. Norm. SupÉ r. 47, 469–503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germain, P., Masmoudi, N., Pausader, B.: Nonneutral global solutions for the electron Euler–Poisson system in three dimensions. SIAM J. Math. Anal. 45(1), 267–278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73, 256–274 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, Y.: Smooth irrotational flows in the large to the Euler–Poisson system in \(R^{3+1}\). Commun. Math. Phys. 195(2), 249–265 (1998)

    Article  MATH  Google Scholar 

  19. Guo, Y., Pausader, B.: Global smooth ion dynamics in the Euler-Poisson system. Comm. Math. Phys. 303, 89–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, Y., Ionescu, A.D., Pausader, B.: Global solutions of certain plasma fluid models in three-dimension. J. Math. Phys. 55(12), 123102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, Y., Ionescu, A.D., Pausader, B.: Global solutions of the Euler–Maxwell two-fluid system in 3D. Ann. Math. 183(2), 377–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, Y., Hadžić, M., Jang, J.: Continued gravitational collapse for Newtonian stars. Arch. Ration. Mech. Anal. 239(1), 431–552 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hao, C., Li, H.-L.: Global existence for compressible Navier–Stokes–Poisson equations in three and higher dimensions. J. Differ. Equ. 246(12), 4791–4812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong, G.-Y., Hou, X.-F., Peng, H.-Y., Zhu, C.-J.: Global spherically symmetric classical solution to the Navier–Stokes–Maxwell system with large initial data and vacuum. Sci. China Math. 57(12), 2463–2484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ionescu, A.D., Pausader, B.: Global solutions of quasilinear systems of Klein–Gordon equations in 3D. J. Eur. Math. Soc. 16, 2355–2431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ionescu, A.D., Pausader, B.: The Euler–Poisson system in 2D: global stability of the constant equilibrium solution. Int. Math. Res. Not. 4, 761–826 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. San Francisco Press, San Francisco (1986)

    Google Scholar 

  28. Li, H.L., Matsumura, A., Zhang, G.: Optimal decay rate of the compressible Navier–Stokes–Poisson system in \(R^3\). Arch. Ration. Mech. Anal. 196(2), 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions, P.L., Perthame, B., Souganidis, P.: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun. Pure Appl. Math. 49, 599–638 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, P.L., Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163, 415–431 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, T.P., Yang, T., Yu, S.H.: Energy method for the Boltzmann equation. Physica D 188, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rousset, F., Sun, C.: Stability of equilibria uniformly in the inviscid limit for the Navier–Stokes–Poisson system. Ann. Inst. H. Poincaré Anal. Non Linéaire 38(4), 1255–1294 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, W., Xu, J.: A sharp time-weighted inequality for the compressible Navier–Stokes–Poisson system in the critical \(L^p\) framework. J. Differ. Equ. 266(10), 6426–6458 (2019)

    Article  MATH  Google Scholar 

  34. Sun, C.-Z.: Long-term regularity of two-dimensional Navier–Stokes–Poisson equations. SIAM J. Math. Anal. 53(5), 5114–5157 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, W.K., Wu, Z.G.: Pointwise estimates of solution for the Navier–Stokes–Poisson equations in multi-dimensions. J. Differ. Equ. 248(7), 1617–1636 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, W.K., Xu, X.: Large time behavior of solution for the full compressible Navier–Stokes–Maxwell system. Commun. Pure Appl. Anal. 14, 2283–2313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253(1), 273–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, G.J., Li, H.-L., Zhu, C.J.: Optimal decay rate of the non-isentropic compressible Navier–Stokes–Poisson system in \(R^3\). J. Differ. Equ. 250(2), 866–891 (2011)

    Article  MATH  Google Scholar 

  39. Zheng, X.: Global well-posedness for the compressible Navier–Stokes–Poisson system in the \(L^p\) framework. Nonlinear Anal. 75(10), 4156–4175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Zongguang Li is supported by the Hong Kong PhD Fellowship Scheme. Zongguang Li would like to thank Professor Renjun Duan for his support during the PhD studies in the Chinese University of Hong Kong. Dongcheng Yang would like to thank Department of Mathematics, CUHK for hosting his visit in the period 2020–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongcheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, D. Convergence of the Navier–Stokes–Maxwell system to the Euler–Maxwell system near constant equilibrium. Z. Angew. Math. Phys. 74, 108 (2023). https://doi.org/10.1007/s00033-023-02000-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02000-1

Keywords

Mathematics Subject Classification

Navigation