Skip to main content
Log in

On fundamental solution of Moore–Gibson–Thompson (MGT) thermoelasticity theory

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the theory of partial differential equations, the fundamental solutions have undoubtedly occupied serious attention, as they have a critical role to play in a wide range of problems under mathematical physics and continuum mechanics. The present work explores the Galerkin-type representation of the field equations based on the recently developed Moore–Gibson–Thompson thermoelasticity theory. With the help of the Laplace transform technique, we then establish the short-time approximated fundamental solutions for two separate cases: concentrated body force and concentrated heat source. For the time domain, the fundamental solutions are obtained by taking inverse Laplace transforms of displacement and temperature components. Lastly, we obtain the fundamental solution for steady vibration in terms of elementary functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  2. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  3. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. C. R. Acad. Sci. 247, 431–433 (1958)

    MATH  Google Scholar 

  4. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  MATH  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 432, 171–194 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  7. Green, A.E.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yu, Y.J., Xue, Z.N., Tian, X.G.: A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53(10), 2543–2554 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dreher, M., Quintanilla, R., Racke, R.: Ill-posed problems in thermomechanics. Appl. Math. Lett. 22, 1374–1379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids. 24, 4020–4031 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  12. Galerkin, B.: Contribution á la solution gènèrale du problème de la thède ì èlasticite, dans le cas de trois dimensions. C. R. Acad. Sci. Paris 190, 1047–1048 (1930)

    MATH  Google Scholar 

  13. Hetnarski, R.B., Ignaczak, J.: Mathematical Theory of Elasticity, 2nd edn. Taylor and Francis, Abingdon (2011)

    MATH  Google Scholar 

  14. Nowacki, W.: Thermoelasticity. Pergamon Press, Oxford (1962)

    MATH  Google Scholar 

  15. Hetnarski, R.B.: The fundamental solution of the coupled thermoelastic problem for small times. Arch. Mech. Stosow. 16, 23–31 (1964)

    MathSciNet  MATH  Google Scholar 

  16. Hetnarski, R.B.: Solution of the coupled problem of thermoelasticity in form of a series of functions. Arch. Mech. Stosow. 16, 919–941 (1964)

    MathSciNet  MATH  Google Scholar 

  17. Hormander, L.: Linear Partial Differential Operators. Springer-Verlag, Berlin, Gottingen, Heidelberg (1963)

    Book  MATH  Google Scholar 

  18. Hormander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1983)

    MATH  Google Scholar 

  19. Knops, R.J.: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity (VD Kupradze, TG Gegelia, MO Basheleishvili, and TV Burchuladze). SIAM Rev. 23(4), 543–545 (1981). https://doi.org/10.1137/1023112

    Article  Google Scholar 

  20. Ciarletta, M.: General theorems and fundamental solutions in the dynamical theory of mixtures. J. Elast. 39(3), 229–246 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Svanadze, M.M.: On the solutions of equations of the linear thermoviscoelasticity theory for Kelvin-Voigt materials with voids. J. Therm. Stress. 37(3), 253–269 (2014)

    Article  Google Scholar 

  22. Wang, J., Dhaliwal, R.S.: Fundamental solutions of the generalizedthermoelastic equations. J. Therm. Stress. 16(2), 135–161 (1993)

    Article  Google Scholar 

  23. Biswas, S., Sarkar, N.: Fundamental solution of the steady oscillations equations in porous thermoelastic medium with dual-phase-lag model. Mech. Mater. 126, 140–147 (2018)

    Article  Google Scholar 

  24. Kothari, S., Kumar, R., Mukhopadhyay, S.: On the fundamental solutions of generalized thermoelasticity with three phase-lags. J. Therm. Stress. 33(11), 1035–1048 (2010)

    Article  MATH  Google Scholar 

  25. Mukhopadhyay, S., Kothari, S., Kumar, R.: On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. Acta Mech. 214(3), 305–314 (2010)

    Article  MATH  Google Scholar 

  26. Kothari, S., Mukhopadhyay, S.: On the representations of solutions in the theory of generalized thermoelastic diffusion. Math. Mech. Solids 17(2), 120–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumari, B., Mukhopadhyay, S.: Fundamental solutions of thermoelasticity with a recent heat conduction model with a single delay term. J. Therm. Stress. 40(7), 866–878 (2017)

    Article  Google Scholar 

  28. Gupta, M., Mukhopadhyay, S.: Galerkin-type solution for the theory of strain and temperature rate-dependent thermoelasticity. Acta Mech. 230(10), 3633–3643 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Singh, B., Gupta, M., Mukhopadhyay, S.: On the fundamental solutions for the strain and temperature rate-dependent generalized thermoelasticity theory. J. Therm. Stress. 43(5), 650–664 (2020)

    Article  Google Scholar 

  30. Singh, B., Mukhopadhyay, S.: Galerkin-type solution for the Moore-Gibson-Thompson thermoelasticity theory. Acta Mech. 232(4), 1273–1283 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

An author, Bhagwan Singh, is grateful for the full financial assistance to the DST - INSPIRE Fellowship/2018/IF. 170983. Another author (SM) gratfully acknowledges the financial support of SERB, India, under the MATRICS scheme (MTR/2022/000333).

Author information

Authors and Affiliations

Authors

Contributions

BS and SM conceived the presented idea. BS formulated the results BS and SM verified the analytical methods. SM supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Bhagwan Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(Y_{11}=\frac{\left( n_{1}^{2}-n_{2}^{2}\right) \left( K-\tau K_{1}n_{2}^{2}\right) -\alpha \tau n_{2}^{2}n_{3}\varTheta _{0}}{\left( -1+\vartheta _{11}n_{2}^{2}\right) \left( -1+\vartheta _{21}n_{2}^{2}\right) },\,\,Y_{12}=\frac{-n_{2}^{2}\left( K_{1}\left( n_{1}^{2}-n_{2}^{2}\right) +\alpha n_{3}\varTheta _{0}\right) \left( K-\tau K^{*}\right) }{K\left( -1+\vartheta _{11}n_{2}^{2}\right) \left( -1+\vartheta _{21}n_{2}^{2}\right) },\)

\(Y_{13}=\frac{\left( n_{1}^{2}-n_{2}^{2}\right) \left( K\vartheta _{11}-\tau K_{1}\right) -\alpha \tau n_{3}\varTheta _{0}}{\left( \vartheta _{11}-\vartheta _{21}\right) \left( -1+\vartheta _{11}n_{2}^{2}\right) },\,\,Y_{14}=\frac{K\vartheta _{12}\left( n_{1}^{2}-n_{2}^{2}\right) -\left( K_{1}\left( n_{1}^{2}-n_{2}^{2}\right) +\alpha n_{3}\varTheta _{0}\right) \left( K-\tau K^{*}\right) }{\left( \vartheta _{11}-\vartheta _{21}\right) \left( -1+\vartheta _{11}n_{2}^{2}\right) },\)

\(Y_{15}=\frac{-\left( K\vartheta _{21}-\tau K_{1}\right) \left( n_{1}^{2}-n_{2}^{2}\right) +\alpha \tau n_{3}\varTheta _{0}}{\left( \vartheta _{11}-\vartheta _{21}\right) \left( -1+\vartheta _{21}n_{2}^{2}\right) },\,\,Y_{16}=\frac{K\vartheta _{22}\left( -n_{1}^{2}+n_{2}^{2}\right) +\left( K_{1}\left( n_{1}^{2}-n_{2}^{2}\right) +\alpha n_{3}\varTheta _{0}\right) \left( K-\tau K^{*}\right) }{\left( \vartheta _{11}-\vartheta _{21}\right) \left( -1+\vartheta _{21}n_{2}^{2}\right) },\)

\(Y_{17}=\frac{\alpha \tau \varTheta _{0}}{\left( \vartheta _{11}-\vartheta _{21}\right) },\,\,\,Y_{18}=\frac{\alpha \varTheta _{0}\left( -K\left( \tau \vartheta _{12}+\vartheta _{21}-\tau \vartheta _{22}\right) +\tau \vartheta _{21}K^{*}+\vartheta _{11}\left( K-\tau K^{*}\right) \right) }{K\left( \vartheta _{11}-\vartheta _{21}\right) ^{2}},\)

$$\begin{aligned} Y_{19}= & {} \frac{\alpha \varTheta _{0}}{K^{2}\left( \vartheta _{11}-\vartheta _{21}\right) ^{3}}\left( K^{2}\left( \vartheta _{12}^{2}+\tau \vartheta _{13}\vartheta _{21}-\vartheta _{21}\vartheta _{22}+\tau \vartheta _{22}^{2}+\vartheta _{12}\left( \vartheta _{21}-2\tau \vartheta _{22}\right) -\tau \vartheta _{21}\vartheta _{23}\right. \right. \\{} & {} \left. \left. +\vartheta _{11}\left( -\vartheta _{12}-\tau \vartheta _{13}+\tau \vartheta _{22}+\tau \vartheta _{23}\right) \right) \right) \\{} & {} \left. \right. -K\left( \vartheta _{11}-\vartheta _{21}\right) \left( \vartheta _{11}-\tau \vartheta _{12}-\vartheta _{21} +\tau \vartheta _{22}\right) K^{*}+\tau \left( \vartheta _{11}-\vartheta _{21}\right) ^{2}\left( K^{*}\right) ^{2}\biggr ),\\ Z_{11}= & {} \frac{\tau n_{3}}{K\left( \vartheta _{11}-\vartheta _{21}\right) },\,\,\,\,\,\,Z_{12}=\frac{n_{3}\left( -K\left( \tau \vartheta _{12}+\vartheta _{21}-\tau \vartheta _{22}\right) +\tau \vartheta _{21}K^{*}+\vartheta _{11}\left( K-\tau K^{*}\right) \right) }{K^{2}\left( \vartheta _{11}-\vartheta _{21}\right) ^{2}},\\{} & {} Z_{13}=\frac{\tau \left( -1+\vartheta _{11}n_{1}^{2}\right) }{K\left( \vartheta _{11}-\vartheta _{21}\right) },\\ Z_{14}= & {} \frac{1}{K^{2}\left( \vartheta _{11}-\vartheta _{21}\right) ^{2}}\left( K\left( -\vartheta _{11}+\tau \vartheta _{12}+\vartheta _{21} -\tau \vartheta _{22}+\left( \vartheta _{11}^{2}-\tau \vartheta _{12}\vartheta _{21}+\vartheta _{11}\left( -\vartheta _{21}+\tau \vartheta _{22}\right) \right) n_{1}^{2}\right) \right. \\{} & {} \left. -\tau \left( \vartheta _{11}-\vartheta _{21}\right) \left( -1+\vartheta _{11}n_{1}^{2}\right) K^{*}\right) ,\\ Z_{15}= & {} \frac{1}{K^{3}\left( \vartheta _{11}-\vartheta _{21}\right) ^{2}}\biggl ( -K^{2}\tau \vartheta _{12}^{2}n_{1}^{2}+K\vartheta _{22}\left( -1+\vartheta _{11}n_{1}^{2}\right) \left( K-\tau K^{*}\right) +K\vartheta _{12}\left( K+K\tau \vartheta _{22}n_{1}^{2}-\tau K^{*}\right. \\{} & {} \left. +\vartheta _{21}n_{1}^{2}\left( -K+\tau K^{*}\right) \right) \\{} & {} +\left( \vartheta _{11}-\vartheta _{21}\right) \left( K^{2}\tau \vartheta _{13}n_{1}^{2}+\left( \vartheta _{11}n_{1}^{2}-1\right) K^{*}\left( -K+\tau K^{*}\right) \right) \biggr ),\\ Z_{16}= & {} \frac{\tau \left( -1+\vartheta _{21}n_{1}^{2}\right) }{K\left( \vartheta _{11}-\vartheta _{21}\right) },\\ Z_{17}= & {} \frac{1}{K^{2}\left( \vartheta _{11}-\vartheta _{21}\right) ^{2}} \left( K\left( \tau \vartheta _{12}+\vartheta _{21}-\tau \vartheta _{22}-\vartheta _{21}\left( \tau \vartheta _{12}+\vartheta _{21}\right) n_{1}^{2}+\vartheta _{11}\left( -1+\left( \vartheta _{21}+\tau \vartheta _{22}\right) n_{1}^{2}\right) \right) \right. \\{} & {} \left. -\tau \left( \vartheta _{11}-\vartheta _{21}\right) \left( -1+\vartheta _{21}n_{1}^{2}\right) K^{*}\right) ,\\ Z_{18}= & {} \frac{1}{K^{3}\left( \vartheta _{11}-\vartheta _{21}\right) ^{2}} \biggl (K^{2}\tau \vartheta _{22}^{2}n_{1}^{2}+K\vartheta _{22}\left( -1+\vartheta _{11}n_{1}^{2}\right) \left( K-\tau K^{*}\right) +K\vartheta _{12}\left( K-\tau \left( K\vartheta _{22}n_{1}^{2}+K^{*}\right) \right. \\{} & {} \left. +\vartheta _{21}n_{1}^{2}\left( -K+\tau K^{*}\right) \right) \\{} & {} +\left( \vartheta _{11}-\vartheta _{21}\right) \left( K^{2}\tau \vartheta _{23}n_{1}^{2}+\left( -1+\vartheta _{21}n_{1}^{2}\right) K^{*}\left( -K+\tau K^{*}\right) \right) \biggr ). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Mukhopadhyay, S. On fundamental solution of Moore–Gibson–Thompson (MGT) thermoelasticity theory. Z. Angew. Math. Phys. 74, 105 (2023). https://doi.org/10.1007/s00033-023-01996-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01996-w

Keywords

Mathematics Subject Classification

Navigation