Skip to main content
Log in

Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a one-dimensional system of fully dynamic and electrostatic or quasi-static piezoelectric beams, where the mechanical equation is subject to a distributed delay of neutral type without any damping term. Under some assumptions, we first prove the global well-posedness of the system by using the classical Faedo-Galerkin approximations along with two a priori estimates. Next, based on the energy method and by constructing an appropriate Lyapunov functional we show that, despite delays are known to be of a destructive nature in the general case, this system is exponentially stable irrespective of any condition on the coefficients of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahlil, M., Feng, B.: Global existence and energy decay of solutions to a coupled wave and Petrovsky system with nonlinear dissipations and source terms. Mediterr. J. Math. 17(2), 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modelling, Estimation and Control (Wiley-MassonSeries Research in Applied Mathematics). Wiley, New York (1996)

    Google Scholar 

  3. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Applied Mathematical Sciences, Springer, New York (2013)

    Book  MATH  Google Scholar 

  4. Cavalcanti, M.M., Cavalcanti, V.D., Ma, T.F.: Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal dissipation in general domains. Differ. Integral Equ. 17(5–6), 495–510 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Choucha, A., Ouchenane, D., Zennir, K., Feng, B.: Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6437

    Article  Google Scholar 

  6. Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26(3), 697–713 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Datko, R., Lagnese, J., Polis, M.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24(1), 152–156 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Domoshnitsky, A., Levi, S., Kappel, R.H., Litsyn, E., Yavich, R.: Stability of neutral delay differential equations with applications in a model of human balancing. Math. Model. Nat. Phenom. (2021). https://doi.org/10.1051/mmnp/2021008

    Article  MathSciNet  MATH  Google Scholar 

  9. Dos Santos, M.J., Fortes, J.C., Cardoso, M.L.: Exponential stability for a piezoelectric beam with a magnetic effect and past history. Discret. Contin. Dyn. Syst. B (2021). https://doi.org/10.3934/dcdsb.2021283

    Article  MATH  Google Scholar 

  10. Feng, B., Özer, A.Ö.: Exponential stability results for the boundary-controlled fully-dynamic piezoelectric beams with various distributed and boundary delays. J. Math. Anal. Appl. 508(1), 125845 (2022). https://doi.org/10.1016/j.jmaa.2021.125845

    Article  MathSciNet  MATH  Google Scholar 

  11. Fleming, A.J.: Charge drive with active DC stabilization for linearization of piezoelectric hysteresis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(8), 1630–1637 (2013)

    Article  Google Scholar 

  12. Freitas, M.M., Ramos, A.J.A., Özer, A.Ö., Almeida Júnior, D.S.: Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier’s law. J. Differ. Equ. 280, 891–927 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gil, M.I.: Stability of Neutral Functional Differential Equations. Atlantis Press, Paris (2014)

    Book  MATH  Google Scholar 

  14. Gu, G.Y., Zhu, L.M., Su, C.Y., Ding, H., Fatikow, S.: Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Automat. Sci. Eng. 13(1), 313–332 (2014)

    Article  Google Scholar 

  15. Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1(3), 327–354 (1990)

    Article  Google Scholar 

  16. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, United States (1993)

    Book  MATH  Google Scholar 

  17. Hassan, J.H., Tatar, N.E.: Adaptive stabilization of a Timoshenko system by boundary feedback controls. Math. Methods Appl. Sci. 45(2), 657–666 (2022)

    Article  MathSciNet  Google Scholar 

  18. Henry, D.: Linear autonomous neutral functional differential equations. J. Differ. Equ. 15(1), 106–128 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hernández, M.E., Rabello, M., Henríquez, H.R.: Existence of solutions for impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331(2), 1135–1158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kerbal, S., Tatar, N.E.: Exponential stabilization of a neutrally delayed viscoelastic Timoshenko beam. Turkish J. Math. 43(2), 595–611 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kong, A., Nonato, C., Liu, W., Dos Santos, M.J., Raposo, C.: Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discret. Contin. Dyn. Syst. Ser. B 27(6), 2959–2978 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lasiecka, I., Miara, B.: Exact controllability of a 3D piezoelectric body. C. R. Math. Acad. Sci. Paris 347(3–4), 167–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, M., Dassios, I., Milano, F.: On the stability analysis of systems of neutral delay differential equations. Circuits Syst. Signal Process. 38(4), 1639–1653 (2019)

    Article  MathSciNet  Google Scholar 

  24. Liu, G., Özer, A.Ö., Wang, M.: Longtime dynamics for a novel piezoelectric beam model with creep and thermo-viscoelastic effects. Nonlinear Anal. Real World Appl. 68, 103666 (2022). https://doi.org/10.1016/j.nonrwa.2022.103666

    Article  MathSciNet  MATH  Google Scholar 

  25. Mokhtari, F., Spinks, G.M., Sayyar, S., Foroughi, J.: Dynamic mechanical and creep behaviour of meltspun pvdf nanocomposite fibers. Nanomaterials 11(8), 1–13 (2021)

    Article  Google Scholar 

  26. Morales, E.H., Henríquez, H.R., McKibben, M.A.: Existence of solutions for second order partial neutral functional differential equations. Integr. Eqn. Oper. Theory 62(2), 191–217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morris, K., Özer, A.Ö.: Strong stabilization of piezoelectric beams with magnetic effects. In: 52nd IEEE Conference on Decision and Control, pp. 3014–3019 (2013). https://doi.org/10.1109/CDC.2013.6760341

  28. Morris, K.A., Özer, A.Ö.: Comparison of stabilization of current-actuated and voltage-actuated piezoelectric beams. In: 53rd IEEE Conference on Decision and Control, pp. 571–576 (2014). https://doi.org/10.1109/CDC.2014.7039442

  29. Mpungu, K., Apalara, T.A.: Exponential stability of laminated beam with neutral delay. Afr. Mat. 33(2), 1–12 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ramos, A.J.A., Gonçalves, C.S.L., Corrêa Neto, S.S.: Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. ESAIM Math. Model. Numer. Anal. 52(1), 255–274 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ramos, A.J.A., Freitas, M.M., Almeida, D.S., Jesus, S.S., Moura, T.R.S.: Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Z. Angew. Math. Phys. 70(2), 1–14 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramos, A.J.A., Özer, A.Ö., Freitas, M.M., Almeida Júnior, D.S., Martins, J.D.: Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback. Z. Angew. Math. Phys. 72(1), 1–15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raposo, C.A., Cattai, A.P., Ribeiro, J.O.: Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory. Open J. Math. Anal. 2(2), 156–171 (2018)

    Article  Google Scholar 

  35. Seghour, L., Tatar, N.E., Berkani, A.: Stability of a thermoelastic laminated system subject to a neutral delay. Math. Methods Appl. Sci. 43(1), 281–304 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smith, R.C.: Smart Material Systems. Society for Industrial and Applied Mathematics (2005)

  37. Soufyane, A., Afilal, M., Santos, M.L.: Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term. Z. Angew. Math. Phys. 72(4), 1–12 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tatar, N.E.: Exponential decay for a neutral wave equation. J. Appl. Anal. Comput. 7(4), 1267–1274 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Tatar, N.E.: Stability for the damped wave equation with neutral delay. Math. Nachr. 290(14–15), 2401–2412 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tatar, N.E.: Exponential decay for a neutral one-dimensional viscoelastic equation. Hacet. J. Math. Stat. 47(3), 625–635 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Tzou, H.H.: Piezoelectric Shells: Sensing, Energy Harvesting, and Distributed Control—Second Edition. Springer, Berlin (2018)

    Google Scholar 

  42. Uchino, K.: The development of piezoelectric materials and the new perspective. In: Advanced Piezoelectric Materials. Woodhead Publishing (2017)

  43. Vinogradov, A.M., Schmidt, V.H., Tuthill, G.F., Bohannan, G.W.: Damping and electromechanical energy losses in the piezoelectric polymer PVDF. Mech. Mater. 36(10), 1007–1016 (2004)

    Article  Google Scholar 

  44. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-4050-1

    Book  MATH  Google Scholar 

  45. Wu, J.: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore (2018)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank the anonymous referees for their helpful observations and information that further improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Loucif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loucif, S., Guefaifia, R., Zitouni, S. et al. Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay. Z. Angew. Math. Phys. 74, 83 (2023). https://doi.org/10.1007/s00033-023-01972-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01972-4

Keywords

Mathematics Subject Classification

Navigation