Skip to main content
Log in

Mathematical analysis of a thermodynamically consistent reduced model for iron corrosion

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are interested in a reduced model for corrosion of iron, in which ferric cations and electrons evolve in a fixed oxide layer subject to a self-consistent electrostatic potential. Reactions at the boundaries are modeled thanks to Butler–Volmer formulas, whereas the boundary conditions on the electrostatic potential model capacitors located at the interfaces between the materials. Our model takes inspiration in existing papers, to which we bring slight modifications in order to make it consistent with thermodynamics and its second principle. Building on a free energy estimate, we establish the global in time existence of a solution to the problem without any restriction on the physical parameters, in opposition to previous works. The proof further relies on uniform estimates on the chemical potentials that are obtained thanks to Moser iterations. Numerical illustrations are finally provided to highlight the similarities and the differences between our new model and the one previously studied in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^p\) bounds of solutions of reaction–diffusion equations. Commun. Partial Differ. Equ. 4(8), 827–868 (1979)

    Article  MATH  Google Scholar 

  2. Bataillon, C.: Boundary conditions and parameters involved in the Diffusion Poisson Coupled Model. Pers. Commun. (2022)

  3. Bataillon, C., Bouchon, F., Chainais-Hillairet, C., Desgranges, C., Hoarau, E., Martin, F., Tupin, M., Talandier, J.: Corrosion modelling of iron based alloy in nuclear waste repository. Electrochimica Acta 55(15), 4451–4467 (2010)

    Article  Google Scholar 

  4. Bataillon, C., Bouchon, F., Chainais-Hillairet, C., Fuhrmann, J., Hoarau, E., Touzani, R.: Numerical methods for simulation of a corrosion model with moving numerical methods for simulation of a corrosion model with moving oxide layer. J. Comput. Phys. 231(18), 6213–6231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blakemore, J.: The parameters of partially degenerate semiconductors. Proc. Phys. Soc. Lond. A 65, 460–461 (1952)

    Article  MATH  Google Scholar 

  6. Breden, M., Chainais-Hillairet, C., Zurek, A.: Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof. ESAIM Math. Model. Numer. Anal. 55(4), 1669–1697 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis, H.: Les opérateurs monotones. Séminaire Choquet. Initiation à l’analyse 5(2), talk:10 (1965–1966)

  8. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. No. 50 in Notas de Matemática. North-Holland, Amsterdam (1973)

  9. Brezis, H.: Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  10. Cancés, C., Venel, J.: On the square-root approximation finite volume scheme for nonlinear drift–diffusion equations. Comptes Rendus. Mathématique 361, 525–558 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chainais-Hillairet, C., Bataillon, C.: Mathematical and numerical study of a corrosion model. Numer. Math. 110(1), 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chainais-Hillairet, C., Colin, P.-L., Lacroix-Violet, I.: Convergence of a finite volume scheme for a corrosion model. Int. J. Finite Vol. 12, 27 (2015)

  13. Chainais-Hillairet, C., Gallouët, T.O.: Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation. Nonlinear Anal. Real World Appl. 31, 38–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chainais-Hillairet, C., Lacroix-Violet, I.: The existence of solutions to a corrosion model. Appl. Math. Lett. 25(11), 1784–1789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chainais-Hillairet, C., Lacroix-Violet, I.: On the existence of solutions for a drift–diffusion system arising in corrosion modelling. DCDS-B 20(1), 77–92 (2014)

    Article  MATH  Google Scholar 

  16. Farrell, P., Koprucki, T., Fuhrmann, J.: Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics. J. Comput. Phys. 346, 497–513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gajewski, H.: On the uniqueness of solutions to the drift–diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4(1), 121–133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113(1), 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gajewski, H., Gröger, K.: Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics. Math. Nachr. 140, 7–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gajewski, H., Gröger, K.: Initial-boundary value problems modelling heterogeneous semiconductor devices. In: Surveys on Analysis, Geometry and Mathematical Physics, Teubner-Texte Mathematics. Teubner, Leipzig, vol. 117, pp. 4–53 (1990)

  21. Gajewski, H., Gröger, K.: Reaction–diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glitzky, A.: Analysis of spin-polarized drift–diffusion models. PAMM 8(1), 10717–10718 (2008)

    Article  MATH  Google Scholar 

  23. Glitzky, A.: Analysis of electronic models for solar cells including energy resolved defect densities. Math. Methods Appl. Sci. 34(16), 1980–1998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glitzky, A.: An electronic model for solar cells including active interfaces and energy resolved defect densities. SIAM J. Math. Anal. 44(6), 3874–3900 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Glitzky, A., Gröger, K., Hünlich, R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60(3–4), 201–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glitzky, A., Hünlich, R.: Energetic estimates and asymptotics for electro–reaction–diffusion systems. ZAMM J. Appl. Math. Mech. 77(11), 823–832 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heida, M.: Convergences of the squareroot approximation scheme to the Fokker–Planck operator. Math. Models Methods Appl. Sci. 28(13), 2599–2635 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, J.-L.: Quelques méthodes de résolution de problemes aux limites non linéaires. Dunod (1969)

  29. Mielke, A.: A gradient structure for reaction–diffusion systems and for energy–drift–diffusion systems. Nonlinearity 24(4), 1329–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moser, J.: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moussa, A.: Some variants of the classical Aubin–Lions lemma. J. Evol. Equ. 16(1), 65–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931)

    Article  MATH  Google Scholar 

  33. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265–2279 (1931)

    Article  MATH  Google Scholar 

  34. Van Roosbroeck, W.: Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560–607 (1950)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Christian Bataillon for his kind feedback on the model. This Project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 847593 (WP DONUT), and was further supported by Labex CEMPI (ANR-11-LABX-0007-01). C. Cancès also acknowledges support from the COMODO Project (ANR-19-CE46-0002) and C. Chainais-Hillairet from the MOHYCON Project (ANR-17-CE40-0027-01). J. Venel warmly thanks the Inria research center of the University of Lille for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Cancès.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancès, C., Chainais-Hillairet, C., Merlet, B. et al. Mathematical analysis of a thermodynamically consistent reduced model for iron corrosion. Z. Angew. Math. Phys. 74, 96 (2023). https://doi.org/10.1007/s00033-023-01970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01970-6

Keywords

Mathematics Subject Classification

Navigation