Skip to main content
Log in

Symmetry-breaking bifurcations in a delayed reaction–diffusion equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with a delayed reaction–diffusion equation on a unit disk. By means of the singularity theory and Lyapunov–Schmidt reduction, we not only derive universal conclusions about the existence of inhomogeneous steady-state solutions and the equivariant Hopf bifurcation theorems, but also obtain some more extraordinary properties of bifurcating solutions, which are produced by the radial symmetry through abstract methods based on the Lie group representation theory. Meanwhile, we illustrate our results by an application to a population model with a time delay. Furthermore, the methods established in this paper are applicable to specific delayed reaction–diffusion models with other symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blythe, S.P., Nisbet, R.M., Gurney, W.S.C.: Instability and complex dynamic behaviour in population models with long time delays. Theor. Popul. Biol. 22, 147–176 (1982)

    MathSciNet  MATH  Google Scholar 

  2. Busenberg, S., Huang, W.Z.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ. 124, 80–107 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Chafee, N., Infante, E.F.: A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl. Anal. 4(1), 17–37 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Chen, S.S., Shi, J.P.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253, 3440–3470 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Davidson, F., Dodds, N.: Spectral properties of non-local differential operators. Appl. Anal. 85, 717–734 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Faria, T.: Normal form and Hopf bifurcation for partial differential equations with delays. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Faria, T.: Normal forms for semilinear functional differential equations in Banach spaces and applications. Discrete Contin. Dyn. Syst. 7, 155–176 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Faria, T.: Stability of periodic solutions arising from Hopf bifurcation for a reaction–diffusion equation with time delay. In: Huang, W.Z. (ed.) Fields Institute Communications, pp. 125–141. Amer. Math. Soc., Providence (2002)

    Google Scholar 

  9. Faria, T., Huang, W.Z., Wu, J.H.: Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces. SIAM J. Math. Anal. 34, 173–203 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Golubitsky, M., Stewart, I.: Hopf bifurcation in the presence of symmetry. Arch. Ration. Mech. Anal. 87, 107–165 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Springer, New York (1988)

    MATH  Google Scholar 

  12. Gourley, S.A., Britton, N.F.: A predator–prey reaction–diffusion system with nonlocal effects. J. Math. Biol. 34, 297–333 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Gourley, S.A., Ruan, S.: Dynamics of the diffusive Nicholson’s blowflies with distributed delay. Proc. R. Soc. Edinb. Sect. A 130, 1275–1291 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Gourley, S.A., So, J.W.-H.: Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44, 49–78 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Gourley, S.A., So, J.W.-H., Wu, J.H.: Nonlocality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124, 5119–5153 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Guo, S.J.: Bifurcation in a reaction–diffusion model with nonlocal delay effect and nonlinear boundary condition. J. Differ. Equ. 289, 236–278 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Guo, S.J.: Equivariant Hopf bifurcation for functional differential equations of mixed type. Appl. Math. Lett. 24, 724–730 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Guo, S.J.: Patterns in a nonlocal time-delayed reaction–diffusion equation. Z. Angew. Math. Phys. 69(1), 10 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Guo, S.J.: Spatio-temporal patterns in a diffusive model with non-local delay effect. IMA J. Appl. Math. 82, 864–908 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Guo, S.J.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259, 1409–1448 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Guo, S.J.: Theory and applications of equivariant normal forms and Hopf bifurcation for semilinear FDEs in Banach spaces. J. Differ. Equ. 317, 387–421 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Guo, S.J., Lamb, J.S.W.: Equivariant Hopf bifurcation for neutral functional differential equations. Proc. Am. Math. Soc. 136, 2031–2041 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Guo, S.J., Li, S.Z.: Oscillatory and stationary patterns in a diffusive model with delay effect. Int. J. Bifurc. Chaos 3, 2150035 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Guo, S.J., Ma, L.: Stability and bifurcation in a delayed reaction–diffusion equation with Dirichlet boundary condition. J. Nonlinear Sci. 26, 545–580 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Guo, S.J., Wu, J.H.: Bifurcation Theory of Functional Differential Equations. Springer, New York (2013)

    MATH  Google Scholar 

  26. Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s bowflies revisited. Nature 287, 17–21 (1980)

    Google Scholar 

  27. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  28. Hu, R., Yuan, Y.: Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed delay. J. Differ. Equ. 250, 2779–2806 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)

    MATH  Google Scholar 

  30. Li, C., Guo, S.J.: Stability and bifurcation of a delayed reaction–diffusion model with Robin boundary condition in heterogeneous environment. Int. J. Bifurc. Chaos 33(2), 2350018 (2023)

    MathSciNet  Google Scholar 

  31. Li, S., Guo, S.J.: Hopf bifurcation for semilinear FDEs in general Banach spaces. Int. J. Bifurc. Chaos 30, 2050130-1–9 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Memory, M.C.: Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion. SIAM J. Math. Anal. 20(3), 533–546 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Ma, L., Guo, S.J.: Bifurcation and stability of a two-species diffusive Lotka–Volterra model. Commun. Pure Appl. Anal. 19, 1205–1232 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Shi, J.P., Wang, X.F.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 2788–2812 (2009)

    MathSciNet  MATH  Google Scholar 

  36. So, J.W.-H.: Dynamics of the diffusive Nicholson’s blowflies equation. In: Yang, Y. (ed.) Proceedings of the International Conference on Dynamical Systems and Differential Equation, vol. 2. Springfield, Missouri, USA (1996). An added volume to Discrete Contin Dyn. Syst. 333–352 (1998)

  37. So, J.W.-H., Yang, Y.J.: Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ. Equ. 150, 317–348 (1998)

    MathSciNet  MATH  Google Scholar 

  38. So, J.W.-H., Yu, J.S.: Global attractivity and uniform persistence in Nicholson’s blowflies. Differ. Equ. Dyn. Syst. 2, 11–18 (1994)

    MathSciNet  MATH  Google Scholar 

  39. So, J.W.-H., Wu, J.H., Yang, Y.J.: Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation. Appl. Math. Comput. 111, 33–51 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Su, Y., Wei, J.J., Shi, J.P.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Su, Y., Wei, J.J., Shi, J.: Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation. Nonlinear Anal. Real World Appl. 11, 1692–1703 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395–418 (1974)

    MathSciNet  MATH  Google Scholar 

  43. Wang, H., Guo, S.J., Li, S.: Stationary solutions of advective Lotka–Volterra models with a weak Allee effect and large diffusion. Nonlinear Anal.: Real World Appl. 56, 103171 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Wu, J.H.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

  45. Wu, J.H.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Yan, X.P., Li, W.T.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23, 1413–1431 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Yoshida, K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12, 321–348 (1982)

    MathSciNet  MATH  Google Scholar 

  49. Zou, R., Guo, S.J.: Dynamics of a diffusive Leslie–Gower predator–prey model in spatially heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 25, 4189–4210 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, X.Q.: Global attractivity in a class of nonmonotone reaction–diffusion equations with time delay. Can. Appl. Math. Q. 17, 271–281 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Natural Science Foundation of China (Grant No. 12071446) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUGST2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangjiang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Guo, S. Symmetry-breaking bifurcations in a delayed reaction–diffusion equation. Z. Angew. Math. Phys. 74, 76 (2023). https://doi.org/10.1007/s00033-023-01968-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01968-0

Keywords

Mathematics Subject Classification

Navigation