Skip to main content
Log in

Exponential and polynomial decay results for a swelling porous elastic system with a single nonlinear variable exponent damping: theory and numerics

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider a swelling porous elastic system with a single nonlinear variable exponent damping. We establish the existence result using the Faedo–Galerkin approximations method, and then, we prove that the system is stable under a natural condition on the parameters of the system and the variable exponent. We obtain exponential and polynomial decay results by using the multiplier method, and these results generalize the existing results in the literature. In addition, we end our paper with some numerical illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data were used to support this study.

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheologicaluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Afilal, M., Guesmia, A., Soufyane, A., Zahri, M.: On the exponential and polynomial stability for a linear Bresse system. Math. Methods Appl. Sci. 43(5), 2626–2645 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Alahyane, M., Soufyane, A., Zahri, M.: Numerical approximation of the optimal control of a population dynamics model. Numer. Methods Partial Differ. Equ. 39(2), 1583–1603 (2023)

    MathSciNet  Google Scholar 

  4. Al-Mahdi, A.M., Al-Gharabli, M.M., Zahri, M.: Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity. Math. Control Related Fields (2022). https://doi.org/10.3934/mcrf.2022010

    Article  Google Scholar 

  5. Al-Gharabli, M.M., Al-Mahdi, A.M., Kafini, M.: Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities. AIMS Math. 6(9), 10105–10129 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Al-Mahdi, A.M., Al-Gharabli, M.M., Guesmia, A., Messaoudi, S.A.: New decay results for a viscoelastic-type Timoshenko system with infinite memory. Z. Angew. Math. Phys. 72(1), 1–24 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Al-Mahdi, A.M., Al-Gharabli, M.M.: New general decay results in an infinite memory viscoelastic problem with nonlinear damping. Bound. Value Probl. 2019(1), 140 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Ammar-Khodja, F., Benabdallah, A., Rivera, J.M., Racke, R.: Energy decay for timoshenko systems of memory type. J. Differ. Equ. 194(1), 82–115 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Apalara, T.A., Yusuf, M.O., Salami, B.A.: On the control of viscoelastic damped swelling porous elastic soils with internal delay feedbacks. J. Math. Anal. Appl. 504(2), 125429 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Apalara, T.A.: General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 469(2), 457–471 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Apalara, T.A.: A general decay for a weakly nonlinearly damped porous system. J. Dyn. Control Syst. 25(3), 311–322 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Apalara, T.A.: General stability of memory-type thermoelastic timoshenko beam acting on shear force. Contin. Mech. Thermodyn. 30(2), 291–300 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Apalara, T.A.: General stability result of swelling porous elastic soils with a viscoelastic damping. Z. Angew. Math. Phys. 71(6), 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Antontsev, S., Shmarev, S.: Evolution pdes with nonstandard growth conditions. In: Atlantis Studies in Differential Equations, vol. 4 (2015)

  15. Antontsev, S.: Wave equation with \(p(x, t)\)-laplacian and damping term: existence and blow-up. Differ. Equ. Appl. 3(4), 503–525 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Antontsev, S.: Wave equation with \(p(x, t)\)-laplacian and damping term: blow-up of solutions. Comptes Rendus M’ecanique 339(12), 751–755 (2011)

    MATH  Google Scholar 

  17. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porousthermo-elasticity. Mech. Res. Commun. 32(6), 652–658 (2005)

    MATH  Google Scholar 

  19. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)

    MATH  Google Scholar 

  20. Handy, R.L.: A Stress Path Model for Collapsible Loess, in Genesis and Properties of Collapsible Soils, pp. 33–47. Springer, Berlin (1995)

    Google Scholar 

  21. Eringen, A.C.: A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32(8), 1337–1349 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Feng, B., Apalara, T.A.: Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 470(2), 1108–1128 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Feng, B., Yin, M.: Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds. Math. Mech. Solids 24(8), 2361–2373 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Ieçan, D.: On the theory of mixtures of thermoelastic solids. J. Therm. Stresses 14(4), 389–408 (1991)

    MathSciNet  Google Scholar 

  25. Khochemane, H. E., Zitouni, S., Bouzettouta, L.: Stability result for a nonlinear damping porous-elastic system with delay term. Nonlinear Stud. 27(2) (2020)

  26. Khochemane, H.E., Bouzettouta, L., Guerouah, A.: Exponential decay and wellposedness for a one-dimensional porous-elastic system with distributed delay. Appl. Anal. 100(14), 2950–2964 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Leonard, R.: Expansive soils. Shallow Foundation. Regent Centre, University of Kansas (1989)

  28. Li, X., Guo, B., Liao, M.: Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources. Comput. Math. Appl. 79(4), 1012–1022 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Lions, J.-L.: Quelques methodes de resolution de problemes aux limites non lineaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  30. Magana, A., Quintanilla, R.: On the time decay of solutions in porous-elasticity with quasi-static microvoids. J. Math. Anal. Appl. 331(1), 617–630 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Messaoudi, S.A., Fareh, A.: General decay for a porous-thermoelastic system with memory: the case of nonequal speeds. Acta Math. Sci. 33(1), 23–40 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Messaoudi, S.A., Talahmeh, A.A., Al-Smail, J.H.: Nonlinear damped wave equation: existence and blow-up. Comput. Math. Appl. 74(12), 3024–3041 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Messaoudi, S.A., Al-Gharabli, M.M., Al-Mahdi, A.M.: On the decay of solutions of a viscoelastic wave equation with variable sources. Math. Methods Appl. Sci. 45(14), 8389–8411 (2020)

    MathSciNet  Google Scholar 

  34. Messaoudi, S.A.: On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities. Math. Methods Appl. Sci. 43(8), 5114–5126 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Messaoudi, S.A., Talahmeh, A.A.: A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities. Appl. Anal. 96(9), 1509–1515 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Messaoudi, S.A., Zahri, M.: Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities. Topol. Methods Nonlinear Anal. 1(1), 1–16 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Muñoz-Rivera, J., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 338(2), 1296–1309 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Pamplona, P.X., Rivera, J.E.M., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 350(1), 37–49 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Payne, L., Rodrigues, J., Straughan, B.: Effect of anisotropic permeability on Darcy’s law. Math. Methods Appl. Sci. 24(6), 427–438 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Quintanilla, R.: Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation. J. Comput. Appl. Math. 145(2), 525–533 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Radulescu, V.D., Repovs, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, vol. 9. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  42. Ramos, A., Freitas, M., Almeida, D., Jr., Noe, A., Santos, M.D.: Stability results for elastic porous media swelling with nonlinear damping. J. Math. Phys. 61(10), 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Ruzicka, M.: Electrorheological UIDS: Modeling and Mathematical Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  44. Santos, M., Campelo, A., Junior, D.A.: On the decay rates of porous elastic systems. J. Elast. 127(1), 79–101 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl. Anal. 87(4), 451–464 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Sun, L., Ren, Y., Gao, W.: Lower and upper bounds for the blow-up time for nonlinear wave equation with variable sources. Comput. Math. Appl. 71(1), 267–277 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Wang, J.-M., Guo, B.-Z.: On the stability of swelling porous elastic soils with fluid saturation by one internal damping. IMA J. Appl. Math. 71(4), 565–582 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Youkana, A., Al-Mahdi, A.M., Messaoudi, S.A.: General energy decay result for a viscoelastic swelling porous-elastic system. Z. Angew. Math. Phys. 73(3), 1–17 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank King Fahd University of Petroleum and Minerals (KFUPM) and University of Sharjah for their continuous supports. The authors also thank the referees for their valuable comments and corrections which improved a lot this work. This is funded by KFUPM, Grant No. INCB2215.

Author information

Authors and Affiliations

Authors

Contributions

AS suggested the model, and AMA-M, MMA-G and AS performed the necessary theory and proofs. IK and MZ performed the numerical and computational part.

Corresponding author

Correspondence to M. Zahri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mahdi, A.M., Al-Gharabli, M.M., Kissami, I. et al. Exponential and polynomial decay results for a swelling porous elastic system with a single nonlinear variable exponent damping: theory and numerics. Z. Angew. Math. Phys. 74, 72 (2023). https://doi.org/10.1007/s00033-023-01962-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01962-6

Keywords

Mathematics Subject Classification

Navigation