Skip to main content
Log in

Stability and regularity in inverse source problem for generalized subdiffusion equation perturbed by locally Lipschitz sources

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate an inverse problem of recovering a space-dependent source in the generalized subdiffusion equation involving locally Lipschitz perturbations, where the additional observations take place at the terminal time and are allowed to be nonlinearly dependent on the state. By using the theory of completely positive functions and local estimates on Hilbert scales, we establish some results on the existence, uniqueness and the Lipschitz-type stability of the solution map of the problem under consideration. In addition, when the input data take more regular values, we obtain results on regularity in time of solution for both the direct linear problem and the inverse problem above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akagi, G.: Fractional flows driven by subdifferentials in Hilbert spaces. Isr. J. Math. 234(2), 809–862 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131(1), 1–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cairoli, A., Baule, A.: Anomalous processes with general waiting times: functionals and multipoint structure. Phys. Rev. Lett. 115(11), 110601 (2015)

    Article  Google Scholar 

  4. Carlone, R., Fiorenza, A., Tentarelli, L.: The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions. J. Funct. Anal. 273(3), 1258–1294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chechkin, A., Gonchar, V.Y., Gorenflo, R., Korabel, N., Sokolov, I.: Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E 78(2), 021111 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chechkin, A., Gorenflo, R., Sokolov, I.: Fractional diffusion in inhomogeneous media. J. Phys. A Math. Gen. 38(42), 679–684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clément, Ph., Nohel, J.A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12(4), 514–535 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Andrade, B., Au, V.V., O’Regan, D., Tuan, N.H.: Well-posedness results for a class of semilinear time-fractional diffusion equations. Z. Angew. Math. Phys. 71(5), 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Andrade, B., Siracusa, G., Viana, A.: A nonlinear fractional diffusion equation: well-posedness, comparison results, and blow-up. J. Math. Anal. Appl. 505(2), 125524 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Andrade, B., Viana, A.: On a fractional reaction-diffusion equation Z. Angew. Math. Phys. 68(3), 59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Differential Equations. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  12. Frömberg, D.: Reaction Kinetics under Anomalous Diffusion. Humboldt-Universität zu Berlin (2011)

  13. Gal, C.G., Warma, M.: Fractional in Time Semilinear Parabolic Equations and Applications. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  14. Gajda, J., Magdziarz, M.: Fractional Fokker-Planck equation with tempered astable waiting times: Langevin picture and computer simulation. Phys. Rev. E 82(1), 011117 (2010)

    Article  MathSciNet  Google Scholar 

  15. Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 34. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  16. Janno, J., Kasemets, K.: A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Probl. Imaging 3(1), 17–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ke, T.D., Thang, N.N., Thuy, L.T.P.: Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces. J. Math. Anal. Appl. 483(2), 123655 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ke, T.D., Thuy, L.T.P.: Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evol. Equ. Control Theory 9(3), 891–914 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ke, T.D., Thuy, L.T.P., Tuan, P.T.: An inverse source problem for generalized Rayleigh–Stokes equations involving superlinear perturbations. J. Math. Anal. Appl. 507(2), 125797 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ke, T.D., Tuan, T.V.: An identification problem involving fractional differential variational inequalities. J. Inverse Ill-Posed Probl. 29(2), 185–202 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb{R}^d\). Math. Ann. 366(3), 941–979 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kinash, N., Janno, J.: Inverse problems for a perturbed time fractional diffusion equation with final overdetermination. Math. Methods Appl. Sci. 41(5), 1925–1943 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kinash, N., Janno, J.: Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 24(2), 236–262 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kochubei, A.N., Luchko, Y. (eds.): Handbook of Fractional Calculus with Applications, vol. 1. Basic Theory, vol. 1. Walter de Gruyter GmbH, Berlin (2019)

    Google Scholar 

  25. Kochubei, A., Luchko, Y. (eds.): Handbook of Fractional Calculus with Applications, vol. 1. Fractional Differential Equations. Walter de Gruyter GmbH, Berlin (2019)

    Google Scholar 

  26. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integr. Eqn. Oper. Theory 71(4), 58–600 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Lan, D.: Regularity and stability analysis for semilinear generalized Rayleigh–Stokes equations. Evol. Equ. Control Theory. 11(1) (2022)

  29. Luc, N.H., Lan, D., O’Regan, D., Tuan, N.A., Zhou, Y.: On the initial value problem for the nonlinear fractional Rayleigh–Stokes equation. J. Fixed Point Theory Appl. 23(4), 1–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14(9–10), 1267–1290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miller, R.K.: On Volterra integral equations with nonnegative integrable resolvents. J. Math. Anal. Appl. 22(2), 319–340 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. Prüss, J.: Evolutionary Integral Equations and Applications. Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel (1993)

    Book  MATH  Google Scholar 

  33. Sandev, T., Metzler, R., Chechkin, A.V.: From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21(1), 10–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Samko, S.G., Cardoso, R.P.: Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 200357, 3609–3632 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30(1), 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-Order Fractional Kinetics. Acta Phys. Pol. B 35(4), 1323–1341 (2004)

    Google Scholar 

  37. Vergara, V., Zacher, R.: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J. Math. Anal. 47(1), 210–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vergara, V., Zacher, R.: Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations. J. Evol. Equ. 17(1), 599–626 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Viana, A.: A local theory for a fractional reaction-diffusion equation. Commun. Contemp. Math. 21(6), 1850033 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, X., Deng, W., Barkai, E.: Tempered fractional Feynman-Kac equation: theory and examples. Phys. Rev. E 93(3), 032151 (2016)

    Article  MathSciNet  Google Scholar 

  41. Zacher, R.: Time fractional diffusion equations: solution concepts, regularity, and long-time behavior. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, vol. 2, pp. 159–179. De Gruyter, Berlin (2019)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the anonymous referee for their valuable suggestions and comments leading to improvement in the presentation of this paper. This work is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 101.02-2021.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Van Tuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Tuan, T. Stability and regularity in inverse source problem for generalized subdiffusion equation perturbed by locally Lipschitz sources. Z. Angew. Math. Phys. 74, 65 (2023). https://doi.org/10.1007/s00033-023-01958-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01958-2

Keywords

Mathematics Subject Classification

Navigation