Skip to main content
Log in

Harmonic acoustic waves in FG rods with exponential inhomogeneity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Variation of the phase velocity, stress and displacement fields, and specific strain and kinetic energy in functionally graded (FG) rods with longitudinal exponential heterogeneity, are analyzed by a variant of Cauchy formalism, allowing constructing secular dispersion equation and the corresponding closed form solutions. The obtained results on dispersion of harmonic waves in a semi-infinite rod reveal (i) substantial spatial dispersion (at the constant time-frequency) of phase velocity, displacement, and stress, which is caused by the exponential inhomogeneity; and (ii) a non-monotonic spatial dispersion of specific strain and kinetic energy, dependent on the exponents in the exponential terms that specify the considered inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abid Mian, M., Spencer, A.J.M.: Exact solutions for functionally graded and laminated elastic materials. J. Mech. Phys. Solids 46, 2283–2295 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Askes, H., Metrikine, A.V., Pichugin, A.V., Bennett, T.: Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Phil. Mag. 88, 3415–3443 (2008)

    Google Scholar 

  3. Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger Publishing Company, Malabar, Florida (1990)

    Google Scholar 

  4. Baron, C., Naili, S.: Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization. J. Acoust. Soc. Am. 127, 1307–1317 (2010)

    Google Scholar 

  5. Booker, J.R., Balaam, N.P., Davis, E.H.: The behaviour of an elastic non-homogeneous half-space. Part I-line and point loads. Int. J. Numer. Anal. Methods Geomech. 9, 353–367 (1985)

    MATH  Google Scholar 

  6. Booker, J.R., Balaam, N.P., Davis, E.H.: The behaviour of an elastic non-homogeneous half-space. Part II-circular and strip footings. Int. J. Numer. Anal. Methods Geomech. 9, 369–381 (1985)

    MATH  Google Scholar 

  7. Butt, S.N., Timothy, J.J., Meschke, G.: Wave dispersion and propagation in state-based peridynamics. Compos. Mech. 60, 725–738 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Chadwick, P., Smith, G.D.: Foundation of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech. 17, 303–376 (1977)

    MATH  Google Scholar 

  9. Djeran-Maigre, I.: Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoust. Phys. 60(2), 200–207 (2014)

    Google Scholar 

  10. Elmaimouni, L., Lefebvre, J.E., Zhang, V., Gryba, T.: Guided waves in radially graded cylinders: a polynomial approach. NDT E Int. 38, 344–353 (2005)

    MATH  Google Scholar 

  11. Garcia-Abdeslem, J.: Gravitational attraction of a rectangular prism with depth-dependent density. Geophysics 57(3), 470–473 (1992)

    Google Scholar 

  12. Gerya, T.: Introduction to Numerical Geodynamic Modeling. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  13. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties: Part I. Point force. Int. J. Solids. Struct. 34, 2357–2392 (1997)

    MATH  Google Scholar 

  14. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties: Part II. Axisymmetric indentors. Int. J. Solids. Struct. 34, 2393–2428 (1997)

    MATH  Google Scholar 

  15. Gibson, R.E.: Some results concerning displacements and stresses in a non-homogeneous elastic half-space. Geotechnique 17, 58–67 (1967)

    Google Scholar 

  16. Goldstein, R.V., et al.: The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading. Arch. Appl. Mech. 86, 2021–2031 (2016)

  17. Gratus, J., McCormack, M.: Spatially dispersive inhomogeneous electromagnetic media with periodic structure. J. Opt. 17, 025105 (2015)

    Google Scholar 

  18. Guo, X., et al.: Dispersion relations of elastic waves in two-dimensional tessellated piezoelectric phononic crystals. Appl. Math. Model. 56, 65–82 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Gurtin, M.E.: The Linear Theory of Elasticity. Handbuch der Physik, pp. 1–296. Springer, Berlin (1976)

    Google Scholar 

  20. Han, X., Liu, G.R., Xi, Z.C., Lam, K.Y.: Characteristics of waves in a functionally graded cylinder. Int. J. Num. Methods Eng. 53, 653–676 (2002)

    MATH  Google Scholar 

  21. Honarvar, F., Enjilela, E., Sinclair, A., Mirnezami, S.: Wave propagation in transversely isotropic cylinders. Int. J. Solids Struct. 44, 5236–5246 (2007)

    MATH  Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  23. Hutmacher, D.W., Sittinger, M., Risbud, M.V.: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotech. 22(7), 354–362 (2004)

    Google Scholar 

  24. Ilyashenko, A.V.: Pochhammer-Chree waves: polarization of the axially symmetric modes. Arch. Appl. Mech. 88, 1385–1394 (2018)

    Google Scholar 

  25. Ilyashenko, A.V.: SH waves in anisotropic (monoclinic) media. Z. Angew. Math. Phys. 69(17), 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Kassir, M.K.: Boussinesq problems for non-homogeneous materials, ASCE. J. Eng. Mech. Div. 98, 457–470 (1972)

    Google Scholar 

  27. Katebi, A., Selvadurai, A.P.S.: Undrained behaviour of a non-homogeneous elastic medium: the influence of variations in the elastic shear modulus with depth. Géotechnique 63(13), 1159–1169 (2013)

    Google Scholar 

  28. Katebi, A., Selvadurai, A.P.S.: A frictionless contact problem for a flexible circular plate and an incompressible non-homogeneous elastic halfspace. Int. J. Mech. Sci. 90, 239–245 (2015)

    Google Scholar 

  29. Kravtsov, A.V.: Finite element models in Lamb’s problem. Mech. Solids 46, 952–959 (2011)

    Google Scholar 

  30. Kumar, P., Harsha, S.P.: Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Compos. Struct. 267, 113901 (2021)

    Google Scholar 

  31. Kuznetsov, S.V.: Fundamental and singular solutions of Lamé equations for media with arbitrary elastic anisotropy. Quart. Appl. Math. 63, 455–467 (2005)

    MathSciNet  Google Scholar 

  32. Kuznetsov, S.V.: Closed form analytical solution for dispersion of Lamb waves in FG plates. Wave Motion 84, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Kuznetsov, S.V.: Abnormal dispersion of flexural Lamb waves in functionally graded plates. Z. Angew. Math. Phys. 70, 89 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Kuznetsov, S.V.: Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence. Waves Random Complex Media 31(6), 1540–1549 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Li, Q., Popov, V.L.: Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials. Compos. Mech. 61(3), 319–329 (2017)

    MathSciNet  MATH  Google Scholar 

  36. McNiven, H.D., Perry, D.C.: Axially symmetric waves in infinite, elastic rods. J. Acoust. Soc. Am. 34, 433–437 (1962)

    Google Scholar 

  37. Mikata, Y.: Analytical solutions of peristatic and peridynamic problems for a ld infinite rod. Int. J. Solids Struct. 49, 2887–2897 (2012)

    Google Scholar 

  38. Mirsky, I.: Wave propagation in transversely isotropic circular cylinders, part I: theory. J. Acoust. Soc. Am. 37, 1016–1026 (1965)

    Google Scholar 

  39. Miyamoto, Y., Koizumi, M., Yamada, O.: High-pressure self-combustion sintering for ceramics. J. Am. Ceramic Soc. 67(11), 224–225 (1984)

    Google Scholar 

  40. Naila, S., Ghazala, A.: Solitary dynamics of longitudinal wave equation arises in magneto-electro-elastic circular rod. Modern Phys. Lett. B 35(5), 2150086 (2021)

    MathSciNet  Google Scholar 

  41. Nelson, F., Dong, S., Kalkra, R.: Vibrations and waves in laminated orthotropic circular cylinders. J. Sound Vib. 18, 429–444 (1971)

    MATH  Google Scholar 

  42. Oner, M.: Vertical and horizontal deformation of an inhomogeneous elastic half-space. Int. J. Numer. Anal. Geomech. 14, 613–629 (1990)

    Google Scholar 

  43. Paggi, M., Zavarise, G.: Contact mechanics of microscopically rough surfaces with graded elasticity. Eur. J. Mech. A Solids 30, 696–704 (2011)

    MATH  Google Scholar 

  44. Quek, S.T., Wang, Q.: On dispersion relations in piezoelectric coupled plate structures. Smart Mater. Struc. 10, 859–867 (2000)

    Google Scholar 

  45. Santare, M.H., Lambros, J.: Use of graded finite elements to model the behaviour of nonhomogeneous materials. J. Appl. Mech. 67(4), 819–822 (2000)

    MATH  Google Scholar 

  46. Selvadurai, A.P.S.: The settlement of a rigid circular foundation resting on a half-space exhibiting a near surface elastic non-homogeneity. Int. J. Numer. Anal. Meth. Geomech. 20(5), 351–364 (1996)

    MATH  Google Scholar 

  47. Selvadurai, A.P.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)

    Google Scholar 

  48. Selvadurai, A.P.S., Katebi, A.: Mindlin’s problem for an incompressible elastic half-space with an exponential variation in the linear elastic shear modulus. Int. J. Eng. Sci. 65, 9–21 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Selvadurai, A.P.S., Katebi, A.: An adhesive contact problem for an incompressible non-homogeneous elastic halfspace. Acta Mech. 226, 249–265 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Selvadurai, A.P.S., Katebi, A.: The Boussinesq–Mindlin problem for a non-homogeneous elastic halfspace. Z. Angew. Math. Phys. 67, 68 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Selvadurai, A.P.S., Singh, B.M., Vrbik, J.: A Reissner–Sagoci problem for a non-homogeneous elastic solid. J. Elast. 16(4), 383–391 (1986)

    MATH  Google Scholar 

  52. Silling, S.A.: Attenuation of waves in a viscoelastic peridynamic medium. Math. Mech. Solids 24(11), 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Silling, S.A.: Propagation of a stress pulse in a heterogeneous elastic bar. J. Peridyn. Nonlocal Model. 3, 255–275 (2021)

    MathSciNet  Google Scholar 

  54. Spencer, A.J.M., Selvadurai, A.P.S.: Some generalized anti-plane strain problems for an inhomogeneous elastic half-space. J. Eng. Math. 34, 403–416 (1998)

    MATH  Google Scholar 

  55. Suganuma, K.: Joining Ceramics and Metals. Handbook of Advanced CeramicsHandbook of Advanced Ceramics, pp. 775–788. Academic Press, New York (2013)

    Google Scholar 

  56. Treschl, G.: Ordinary Differential Equations and Dynamical Systems. AMS, New York (2012)

    Google Scholar 

  57. Valsamos, G., Casadei, F., Solomos, G.: A numerical study of wave dispersion curves in cylindrical rods with circular cross-section. Appl. Comput. Mech. 7, 99–114 (2013)

    Google Scholar 

  58. Van Pamel, A., Sha, G., Rokhlin, S.I., Lowe, M.J.S.: Finite-element modelling of elastic wave propagation and scattering within heterogeneous media. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 473, 1–21 (2017)

    Google Scholar 

  59. Wang, Q., Varadan, V.K.: Longitudinal wave propagation in piezoelectric coupled rods. Smart Mater. Struct. 11, 48–54 (2002)

    Google Scholar 

  60. Wang, L., Xu, J., Wang, J.: Static and dynamic Green’s functions in peridynamics. J. Elast. 126, 95–125 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Xu, X., Foster, J.T.: Deriving peridynamic influence functions for one-dimensional elastic materials with periodic microstructure. J. Peridyn. Nonlocal Model. 2, 337–351 (2020)

    MathSciNet  Google Scholar 

  62. Zarezadeh, E., Hosseini, V., Hadi, A.: Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory. Mech. Based Design Struct. Mach. 48(4), 480–495 (2020)

    Google Scholar 

  63. Zemanek, J.: An experimental and theoretical investigation of elastic wave propagation in a cylinder. J. Acoust. Soc. Am. 51, 265–283 (1972)

    MATH  Google Scholar 

  64. Zhang, X., Li, Zh., Wang, X., Yu, J.: The fractional Kelvin-Voigt model for circumferential guided waves in a viscoelastic FGM hollow cylinder. Appl. Math. Model. 89, 299–313 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I am a sole author of the manuscript.

Corresponding author

Correspondence to S. V. Kuznetsov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Harmonic acoustic waves in FG rods with exponential inhomogeneity. Z. Angew. Math. Phys. 74, 63 (2023). https://doi.org/10.1007/s00033-023-01955-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01955-5

Keywords

Mathematics Subject Classification

Navigation