Skip to main content
Log in

Global boundedness and asymptotic behavior in an attraction–repulsion chemotaxis system with nonlocal terms

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the attraction–repulsion chemotaxis system with nonlocal terms

$$\begin{aligned} \left\{ \begin{array}{lll} u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+\xi \nabla \cdot (u\nabla w)+f(u), &{}x\in \Omega , t>0, \\ \tau _1v_t=\Delta v-\alpha _1v+\beta _1u, &{} x\in \Omega , t>0, \\ \tau _2w_t=\Delta w-\alpha _2w+\beta _2u, &{} x\in \Omega , t>0 \end{array}\right. (*) \end{aligned}$$

under Neumann boundary conditions in a bounded domain with smooth boundary, where \(f(u)=u^{\sigma }(a_0-a_1u-a_2 \int \limits _{\Omega }u^{\beta })\). We show that the system (\(*\)) possesses a unique global classical solution in three different cases (parabolic–elliptic–elliptic, fully parabolic, parabolic–parabolic–elliptic). Our results generalize and improve partial previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmad, S.: Convergence and ultimate bound of solutions of the nonautonomous Volterra–Lotka competition equations. J. Math. Anal. Appl. 127, 377–387 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bian, S., Chen, L.: A nonlocal reaction diffusion equation and its relation with Fujita exponent. J. Math. Anal. Appl. 444, 1479–1489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bian, S., Chen, L., Latos, E.: Chemotaxis model with nonlocal nonlinear reaction in the whole space. Discrete Contin. Dyn. Syst. Ser. A 38(10), 5067–5083 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bian, S., Chen, L., Latos, E.: Global existence and asymptotic behavior of solutions to a nonlocal Fisher-KPP type problem. Nonlinear Anal. 149, 165–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bian, S., Chen, L., Latos, E.: Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system. Nonlinear Anal. 176, 178–191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bian, S., Liu, J., Zou, C.: Ultra-contractivity for Keller–Segel model with diffusion exponent \(m>1-\frac{2}{d}\). Kinet. Relat. Models 7(1), 9–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braun, M.: Differential Equations and their Applications. Springer, New York (1983)

    Book  MATH  Google Scholar 

  11. Cao, X.: Large time behavior in the logistic Keller–Segel model via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. B 22(9), 3369–3378 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. Ser. A 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Hillen, T., Painter, K.: A users guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Deutsch. Math. Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Isenbach, M.: Chemotaxis. Imperial College Press, London (2004)

    Book  Google Scholar 

  18. Issa, T., Salako, R.: Asymptotic dynamics in a two-species chemotaxis model with non-local terms. Discrete Contin. Dyn. Syst. Ser. B 22(10), 2829–3874 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Issa, T., Shen, W.: Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources. SIAM J. Appl. Dyn. Syst. 16(2), 926–973 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Issa, T., Shen, W.: Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments. J. Dyn. Diff. Equat. 31, 1839–1871 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Issa, T., Shen, W.: Uniqueness and stability of coexistence states in two species models with/without chemotaxis on bounded heterogeneous environments. J. Dyn. Diff. Equat. 31, 2305–2338 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Issa, T., Shen, W.: Pointwise persistence in full chemotaxis models with logistic source on bounded heterogeneous environments. J. Math. Anal. Appl. 490, 124204 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, H.: Boundedness of the attraction–repulsion Keller–Segel system. J. Math. Anal. Appl. 422(2), 1463–1478 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Latos, E.: Nonlocal reaction preventing blow-up in the supercritical case of chemotaxis (preprint)

  26. Li, Y.: Global boundedness of weak solution in an attraction–repulsion chemotaxis system with p-Laplacian diffusion. Nonlinear Anal. Real World Appl. 51, 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  27. Li, X., Xiang, Z.: On an attraction–repulsion chemotaxis system with a logistic source. IMA J. Math. Appl. Math. 81, 165–198 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Lin, K., Mu, C., Zhou, D.: Stabilization in a higher-dimensional attraction–repulsion chemotaxis system if repulsion dominates over attraction. Math. Models Methods Appl. Sci. 28, 1105–1134 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer’s disease senile plagues: is there a connection. Bull. Math. Biol. 65, 693–730 (2003)

    Article  MATH  Google Scholar 

  30. Mimura, M., Tsujikawa, T.: Aggregating pattern dynamics in a chemotaxis model including growth. Physica A 230, 449–543 (1996)

    Article  Google Scholar 

  31. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Negreanu, M., Tello, J.: On a competitive system under chemotactic effects with non-local terms. Nonlinearity 26, 1083–1103 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Negreanu, M., Tello, J.I., Vargas, A.M.: A note on a periodic Parabolic-ODE chemotaxis system. Appl. Math. Lett. 106, 106351 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Negreanu, M., Tello, J.I., Vargas, A.M.: On a fully parabolic chemotaxis system with nonlocal growth term. Nonlinear Anal. 213, 112518 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Negreanu, M., Tello, J.I., Vargas, A.M.: On a fully parabolic chemotaxis system with source term and periodic asymptotic behavior. Z. Angew. Math. Phys. 71, 65 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Painter, K.J., Bloomfield, J.M., Sherratt, J.A., Gerisch, A.: A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull. Math. Biol. 77, 1132–1165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren, G., Liu, B.: Global boundedness and asymptotic behavior in a two-species chemotaxis–competition system with two signals. Nonlinear Anal. Real World Appl. 48, 288–325 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ren, G., Liu, B.: Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source. Nonlinear Anal. Real World Appl. 46, 545–582 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ren, G., Liu, B.: Global boundedness and asymptotic behavior in a quasilinear attraction–repulsion chemotaxis model with nonlinear signal production and logistic-type source. Math. Models Methods Appl. Sci. 30(13), 2619–2689 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ren, G., Liu, B.: Global dynamics for an attraction–repulsion chemotaxis model with logistic source. J. Differ. Equ. 268(8), 4320–4373 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ren, G., Liu, B.: Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source. J. Differ. Equ. 269(2), 1484–1520 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ren, G., Liu, B.: Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka–Volterra competitive kinetics. Math. Models Methods Appl. Sci. 31(5), 941–978 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Salako, R., Shen, W.: Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(R^N\). I. Persistence and asymptotic spreading. Math. Models Methods Appl. Sci. 28(11), 2237–2273 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Salako, R., Shen, W.: Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(R^N\). II. Existence, uniqueness, and stability of strictly positive entire solutions. J. Math. Anal. Appl. 464, 883–910 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shi, S., Liu, Z., Jin, H.: Boundedness and large time behavior of an attraction–repulsion chemotaxis model with logistic source. Kinet. Relat. Models 10, 855–878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tao, Y., Wang, Z.: Competing effects of attraction versus repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23(1), 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tao, Y., Winkler, M.: Large time behavior in a multi-dimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 4229–4250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tello, J., Winkler, M.: A chemotaxis system with logistic source. Commun. Part. Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Viglialoro, G.: Very weak global solutions to a parabolic–parabolic chemotaxis-system with logistic source. J. Math. Anal. Appl. 439, 197–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal. Real World Appl. 34, 520–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  52. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35(8), 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic damping. J. Differ. Equ. 257, 1056–1077 (2014)

    Article  MATH  Google Scholar 

  56. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69(2), 40 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Winkler, M.: A three-dimensional Keller–Segel–Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Functi. Anal. 276(5), 1339–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  59. Winkler, M.: Attractiveness of constant states in logistic-type Keller–Segel systems involving subquadratic growth restrictions. Adv. Nonlinear Stud. 20(4), 795–817 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Winkler, M.: Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier–Stokes equations. SIAM J. Math. Anal. 52(2), 2041–2080 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Winkler, M.: The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in \(L^1\). Adv. Nonlin. Anal. 9, 526–566 (2020)

    MATH  Google Scholar 

  62. Winkler, M.: \(L^1\) solutions to parabolic Keller–Segel systems involving arbitrary superlinear degradation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (in press) (2021)

  63. Wu, S., Shi, J., Wu, B.: Global existence of solutions to an attraction–repulsion chemotaxis model with growth. Commun. Pure Appl. Anal. 16, 1037–1058 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Xiang, T.: Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller–Segel model. SIAM J. Appl. Math. 78, 2420–2438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller–Segel chemotaxis system. J. Math. Phys. 59, 081502 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. Xu, P., Zheng, S.: Global boundedness in an attraction–repulsion chemotaxis system with logistic source. Appl. Math. Lett. 83, 1–6 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zheng, J., Li, Y., Bao, G., Zou, X.: A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source. J. Math. Anal. Appl. 462, 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zheng, P., Mu, C., Hu, X.: Boundedness in the higher dimensional attraction–repulsion chemotaxis-growth system. Comput. Math. Appl. 72, 2194–2202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to Professor Bin Liu for helpful discussions during the preparation of the paper and moreover express his gratitude to the anonymous reviewers and editors for their valuable comments and suggestions which led to the improvement in the original manuscript. Guoqiang Ren is supported by NSF of China (Grant No 12001214) and the Fundamental Research Funds for the Central Universities (Grant No. 3004011139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G. Global boundedness and asymptotic behavior in an attraction–repulsion chemotaxis system with nonlocal terms. Z. Angew. Math. Phys. 73, 200 (2022). https://doi.org/10.1007/s00033-022-01832-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01832-7

Keywords

Mathematics Subject Classification

Navigation