Abstract
A nonlinear one-dimensional mathematical model of a thermal breakdown of an electrical insulation having the shape of a hollow circular cylinder caused by the difference of the electric potentials on the cylindrical surfaces is constructed. The cylinder is made of the material that is a composite with a polymer matrix modified by dispersed inclusions improving characteristics of the insulation. The quantitative analysis of the model is carried out for tasks when the density of the heat flow on the inner surface of the cylinder and conditions of convective heat exchange on its outer surface are given. The results of this analysis allow us to determine the possible applications of polymer composites as dielectrics in various high-voltage electrical and electrophysical devices, particularly, as the electrical insulation of conducting strands of high-voltage DC cables.
Similar content being viewed by others
References
Schramm, R.E., Clark, A.F., Reed, R.P.: A Compilation and Evaluation of Mechanical, Thermal and Electrical Properties of Selected Polymers. National Bureau of Standards, Boulder (1973)
Sazhin, B.I. (ed.): Elektricheskiye Svoystva Polimerov [Electrical Properties of Polymers], p. 224. Khimiya Publ., St. Petersburg (1986) (in Russian)
Mark, J.E. (ed.): Physical Properties of Polymers Handbook, p. 1072. Springer, Berlin (2007)
Bailey, J. (ed.): Properties and Behavior of Polymers. Set, vol. 2, p. 1591. Wiley, Hoboken (2011)
Vorob’yev, G.A., Pokholkov, Yu.P., Korolev, Yu.D., Merkulov, V.I.: Fizika Dielektrikov (Oblast’ Sil’nykh Poley) [Physics of Dielectrics (Strong Fields)], p. 244. TPU Publ., Tomsk (2003) (in Russian)
Ogbonna, V.E., Popoola, A.P.I., Popoola, O.M., et al.: A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym. Bull. 79, 663–695 (2022). https://doi.org/10.1007/s00289-020-03487-8
Yağci, ö, Gümüs, B.E., Taşdemir, M.: Thermal, structural and dynamical mechanical properties of hollow glass sphere-reinforced polypropylene composites. Polym. Bull. 78, 3089–3101 (2021). https://doi.org/10.1007/s00289-020-03257-6
Trofimov, N.N., Kanovich, M.Z., Kartashov, E.M., et al.: Fizika Kompozitsionnykh Materialov [Physics of Composite Materials], vol. 2, p. 344. Mir Publ., Moscow (2005)
Zarubin, V.S., Kuvyrkin, G.N., Savel’Eva, IYu.: Comparative analysis for thermal conductivity estimates of unidirectional fiber composites Herald of the Bauman Moscow State Technical University. Ser. Nat. Sci. 5, 67–83 (2016)
Song, K., Yin, D., Schiavone, P.: Conversion efficiency and effective properties of particulate-reinforced thermoelectric composites. Z. Angew. Math. Phys. 71, 54 (2020). https://doi.org/10.1007/s00033-020-1275-z
Zarubin, V.S., Kuvyrkin, G.N.: Matematicheskiye Modeli Mekhaniki i Elektrodinamiki Sploshnoy Sredy [Mathematical Models of Continuum Mechanics and Electrodynamics], p. 512. MGTU imeni N.E. Baumana Publ., Moscow (2008) (in Russian)
Karslou, G., Yeger, D.: Teploprovodnost’ Tverdykh Tel [Thermal Conductivity of Solids], p. 488. Nauka Publ., Moscow (1964)
Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125 (1962)
Odelevskiy, V.I.: Calculation of generalized conductivity of heterogeneous systems. Zhurnal tekhnicheskoy fiziki 21(6), 667–685 (1951). (in Russian)
Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, IYu.: Estimation of Effective Thermal Conductivity of Composite with Spherical Inclusions by Self-matching Method, vol. 9, pp. 435–444. Nauchnoye izdaniye MGTU im. N.E. Baumana, Nauka i obrazovaniye (2013).. (in Russian)
Novichenok, L.N., Shul’man, Z.P.: Teplofizicheskiye Svoystva Polimerov [Thermophysical Properties of Polymers], p. 120. Nauka i tekhnika Publ., Minsk (1971) (in Russian)
Leko, V.K., Mazurin, O.V.: Svoystva Kvartsevogo Stekla [Properties of Quartz Glass], p. 166. Nauka Publ., St. Petersburg (1985) (in Russian)
Suzdal’tsev, Ye.I.: Svoystva kvartsevoy keramiki [Properties of Quartz Ceramics], Nos. 7–8, pp. 21–34. Ogneupory i tekhnicheskaya keramika (2009) (in Russian)
Zarubin, V.S., Zimin, V.N., Kuvyrkin, G.N.: Temperature state of a hollow cylinder made of a polymer dielectric with temperature-dependent characteristics. J. Appl. Mech. Tech. Phys. 60(1), 59–67 (2019)
Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, I.Y.: Mathematical model of thermal breakdown of a plane layer of a polar dielectric. Z. Angew. Math. Phys. 69, 91 (2018). https://doi.org/10.1007/s00033-018-0988-8
Acknowledgements
The research was support by Ministry of Science and Higher Education of the Russian Federation [Grant Nos. 0705-2020-0032].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kuvyrkin, G.N., Savelyeva, I.Y., Zarubin, V.S. et al. Mathematical model of thermal breakdown of electrical insulation made of polymer composite. Z. Angew. Math. Phys. 73, 181 (2022). https://doi.org/10.1007/s00033-022-01824-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00033-022-01824-7