Skip to main content
Log in

Mathematical model of thermal breakdown of electrical insulation made of polymer composite

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A nonlinear one-dimensional mathematical model of a thermal breakdown of an electrical insulation having the shape of a hollow circular cylinder caused by the difference of the electric potentials on the cylindrical surfaces is constructed. The cylinder is made of the material that is a composite with a polymer matrix modified by dispersed inclusions improving characteristics of the insulation. The quantitative analysis of the model is carried out for tasks when the density of the heat flow on the inner surface of the cylinder and conditions of convective heat exchange on its outer surface are given. The results of this analysis allow us to determine the possible applications of polymer composites as dielectrics in various high-voltage electrical and electrophysical devices, particularly, as the electrical insulation of conducting strands of high-voltage DC cables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schramm, R.E., Clark, A.F., Reed, R.P.: A Compilation and Evaluation of Mechanical, Thermal and Electrical Properties of Selected Polymers. National Bureau of Standards, Boulder (1973)

    Book  Google Scholar 

  2. Sazhin, B.I. (ed.): Elektricheskiye Svoystva Polimerov [Electrical Properties of Polymers], p. 224. Khimiya Publ., St. Petersburg (1986) (in Russian)

  3. Mark, J.E. (ed.): Physical Properties of Polymers Handbook, p. 1072. Springer, Berlin (2007)

    Google Scholar 

  4. Bailey, J. (ed.): Properties and Behavior of Polymers. Set, vol. 2, p. 1591. Wiley, Hoboken (2011)

    Google Scholar 

  5. Vorob’yev, G.A., Pokholkov, Yu.P., Korolev, Yu.D., Merkulov, V.I.: Fizika Dielektrikov (Oblast’ Sil’nykh Poley) [Physics of Dielectrics (Strong Fields)], p. 244. TPU Publ., Tomsk (2003) (in Russian)

  6. Ogbonna, V.E., Popoola, A.P.I., Popoola, O.M., et al.: A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym. Bull. 79, 663–695 (2022). https://doi.org/10.1007/s00289-020-03487-8

    Article  Google Scholar 

  7. Yağci, ö, Gümüs, B.E., Taşdemir, M.: Thermal, structural and dynamical mechanical properties of hollow glass sphere-reinforced polypropylene composites. Polym. Bull. 78, 3089–3101 (2021). https://doi.org/10.1007/s00289-020-03257-6

    Article  Google Scholar 

  8. Trofimov, N.N., Kanovich, M.Z., Kartashov, E.M., et al.: Fizika Kompozitsionnykh Materialov [Physics of Composite Materials], vol. 2, p. 344. Mir Publ., Moscow (2005)

    Google Scholar 

  9. Zarubin, V.S., Kuvyrkin, G.N., Savel’Eva, IYu.: Comparative analysis for thermal conductivity estimates of unidirectional fiber composites Herald of the Bauman Moscow State Technical University. Ser. Nat. Sci. 5, 67–83 (2016)

    Google Scholar 

  10. Song, K., Yin, D., Schiavone, P.: Conversion efficiency and effective properties of particulate-reinforced thermoelectric composites. Z. Angew. Math. Phys. 71, 54 (2020). https://doi.org/10.1007/s00033-020-1275-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Zarubin, V.S., Kuvyrkin, G.N.: Matematicheskiye Modeli Mekhaniki i Elektrodinamiki Sploshnoy Sredy [Mathematical Models of Continuum Mechanics and Electrodynamics], p. 512. MGTU imeni N.E. Baumana Publ., Moscow (2008) (in Russian)

  12. Karslou, G., Yeger, D.: Teploprovodnost’ Tverdykh Tel [Thermal Conductivity of Solids], p. 488. Nauka Publ., Moscow (1964)

    Google Scholar 

  13. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125 (1962)

    Article  Google Scholar 

  14. Odelevskiy, V.I.: Calculation of generalized conductivity of heterogeneous systems. Zhurnal tekhnicheskoy fiziki 21(6), 667–685 (1951). (in Russian)

    Google Scholar 

  15. Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, IYu.: Estimation of Effective Thermal Conductivity of Composite with Spherical Inclusions by Self-matching Method, vol. 9, pp. 435–444. Nauchnoye izdaniye MGTU im. N.E. Baumana, Nauka i obrazovaniye (2013).. (in Russian)

    Google Scholar 

  16. Novichenok, L.N., Shul’man, Z.P.: Teplofizicheskiye Svoystva Polimerov [Thermophysical Properties of Polymers], p. 120. Nauka i tekhnika Publ., Minsk (1971) (in Russian)

  17. Leko, V.K., Mazurin, O.V.: Svoystva Kvartsevogo Stekla [Properties of Quartz Glass], p. 166. Nauka Publ., St. Petersburg (1985) (in Russian)

  18. Suzdal’tsev, Ye.I.: Svoystva kvartsevoy keramiki [Properties of Quartz Ceramics], Nos. 7–8, pp. 21–34. Ogneupory i tekhnicheskaya keramika (2009) (in Russian)

  19. Zarubin, V.S., Zimin, V.N., Kuvyrkin, G.N.: Temperature state of a hollow cylinder made of a polymer dielectric with temperature-dependent characteristics. J. Appl. Mech. Tech. Phys. 60(1), 59–67 (2019)

    Article  MathSciNet  Google Scholar 

  20. Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, I.Y.: Mathematical model of thermal breakdown of a plane layer of a polar dielectric. Z. Angew. Math. Phys. 69, 91 (2018). https://doi.org/10.1007/s00033-018-0988-8

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was support by Ministry of Science and Higher Education of the Russian Federation [Grant Nos. 0705-2020-0032].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Savelyeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuvyrkin, G.N., Savelyeva, I.Y., Zarubin, V.S. et al. Mathematical model of thermal breakdown of electrical insulation made of polymer composite. Z. Angew. Math. Phys. 73, 181 (2022). https://doi.org/10.1007/s00033-022-01824-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01824-7

Keywords

Mathematics Subject Classification

Navigation