Skip to main content
Log in

Topological structure of the solution set for a Volterra-type nonautonomous evolution inclusion with impulsive effect

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is devoted to study the topological structure of solution sets for a Volterra-type nonautonomous evolution inclusion with impulsive effects in a Fréchet space. The evolution family generated by the operator in the principal part is of no equicontinuity. Our attention is paid to establish the \(R_\delta \)-structure of the solution set and geometric features of the corresponding solution map. Moreover, the long-time existence of the nonlocal Cauchy problem is also considered. Finally, we present an example to illustrate the applicability of our abstract results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246, 3834–3863 (2009)

    Article  MathSciNet  Google Scholar 

  2. Andres, J., Pavlačková, M.: Topological structure of solution sets to asymptotic boundary value problems. J. Differ. Equ. 248, 127–150 (2010)

    Article  MathSciNet  Google Scholar 

  3. Aronszajn, N.: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43, 730–738 (1942)

    Article  MathSciNet  Google Scholar 

  4. Ballinger, G., Liu, X.: Boundness for impulsive delay differential equations and applications to population growth models. Nonlinear Anal. 53, 1041–1062 (2003)

    Article  MathSciNet  Google Scholar 

  5. Benedetti, I., Rubbioni, P.: Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay. Topol. Methods Nonlinear Anal. 32, 227–245 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Bothe, D.: Multi-valued perturbations of \(m\)-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)

    Article  MathSciNet  Google Scholar 

  7. Cardinali, T., Rubbioni, P.: Mild solutions for impulsive semilinear evolution differential inclusions. J. Appl. Funct. Anal. 1(3), 303–325 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Cardinali, T., Servadei, R.: Periodic solutions of nonlinear impulsive differential inclusions with constraints. Proc. Am. Math. Soc. 132, 2339–2349 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chang, K.C.: Methods in Nonlinear Analysis. Springer Monographs in Mathematics, Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Chen, D.H., Wang, R.N., Zhou, Y.: Nonlinear evolution inclusions: topological characterizations of solution sets and applications. J. Funct. Anal. 265, 2039–2073 (2013)

    Article  MathSciNet  Google Scholar 

  11. De Blasi, F.S., Myjak, J.: On the structure of the set of solutions of the Darboux problem for hyperbolic equations. Proc. Edinb. Math. Soc. 29, 7–14 (1986)

    Article  MathSciNet  Google Scholar 

  12. Diestel, J., Ruess, W.M., Schachermayer, W.: Weak compactness in \(L^{1}(\mu ; X)\). Proc. Am. Math. Soc. 118, 447–453 (1993)

  13. Djebali, S., Górniewicz, L., Ouahab, A.: First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets. Math. Comput. Model. 52, 683–714 (2010)

    Article  MathSciNet  Google Scholar 

  14. Djebali, S., Górniewicz, L., Ouahab, A.: Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces. Nonlinear Anal. 74, 2141–2169 (2011)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  16. Gabor, G., Grudzka, A.: Structure of the solution set to impulsive functional differential inclusions on the half-line. Nonlinear Differ. Equ. Appl. 19, 609–627 (2012)

    Article  MathSciNet  Google Scholar 

  17. Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Topological Fixed Point Theory and Its Applications, vol. 4, 2nd edn. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  18. Hu, S.C., Papageorgiou, N.S.: On the topological regularity of the solution set of differential inclusions with constraints. J. Differ. Equ. 107, 280–289 (1994)

    Article  MathSciNet  Google Scholar 

  19. Kamenskiǐ, M., Obukhovskiǐ, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, vol. 7. Walter de Gruyter & Co., Berlin (2001)

    Book  Google Scholar 

  20. Kneser, H.: Über die Lösungen eine System gewöhnlicher Differentialgleichungen das der Lipschitzchen Bedingung nicht genügt. S. B. Preuss. Akad. Wiss. Phys. Math. Kl. 4, 171–174 (1923)

    MATH  Google Scholar 

  21. Kryszewski, W., Plaskacz, S.: Periodic solutions to impulsive differential inclusions with constraints. Nonlinear Anal. 65, 1794–1804 (2006)

    Article  MathSciNet  Google Scholar 

  22. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, vol. 16. Birkhäuser Verlag, Basel (1995)

    MATH  Google Scholar 

  23. Ma, Z.X., Wang, R.N., Yu, Y.Y.: The Airy equations with impulsive effect: multi-valued nonlinear perturbations. Topol. Methods Nonlinear Anal. 59(1), 359–384 (2022)

    MathSciNet  MATH  Google Scholar 

  24. McKibben, M.: Discovering Evolution Equations with Applications. Deterministic Equations, vol. I. Chapman & Hall/CRC, New York (2011)

    Book  Google Scholar 

  25. Obukhovskii, V., Yao, J.-C.: On impulsive functional differential inclusions with Hille–Yosida operators in Banach spaces. Nonlinear Anal. 73, 1715–1728 (2010)

    Article  MathSciNet  Google Scholar 

  26. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  27. Pietkun, R.: Periodic solutions to impulsive functional differential inclusions with constraints. Nonlinear Anal. Forum 14, 175–190 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Wang, R.N., Ma, Q.H., Zhou, Y.: Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications. Math. Ann. 362, 173–203 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, R.N., Ma, Z.X., Miranville, A.: Topological structure of the solution sets for a nonlinear delay evolution. Int. Math. Res. Not. IMRN 7, 4801–4889 (2022)

    Article  MathSciNet  Google Scholar 

  30. Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer Monographs in Mathematics, Springer, Berlin (2010)

    Book  Google Scholar 

  31. Yu, Y.Y., Ma, Z.X.: Volterra nonautonomous evolution inclusions with time delay effect: topological structure of solution set and applications, submitted

  32. Yu, Y.Y., Wang, R.N., Vrabie, I.I.: Nonlinear Volterra delay evolution inclusions subjected to nonlocal initial conditions. Topol. Methods Nonlinear Anal. 58, 135–160 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors want to express their thanks to the anonymous referees for their suggestions and comments that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang-Yang Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicts of interest regarding the content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research leading to the results of this paper has received funding from the NSFC (No. 11971317) and the scientific research start funds for Xuzhou University of Technology advanced talents introduction (No. 02900264)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, ZX., Yu, YY. Topological structure of the solution set for a Volterra-type nonautonomous evolution inclusion with impulsive effect. Z. Angew. Math. Phys. 73, 162 (2022). https://doi.org/10.1007/s00033-022-01810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01810-z

Keywords

Mathematics Subject Classification

Navigation