Skip to main content
Log in

Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I standard incidence

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with a reaction–diffusion SIS epidemic model with standard incidence infection mechanism and linear source in advective heterogeneous environments. We have derived the threshold-type dynamics in terms of the basic reproduction number \({\mathcal {R}}_0\): the disease will be eliminated if \({\mathcal {R}}_0\le 1\) while it persists uniformly if \({\mathcal {R}}_0>1\). The global asymptotic stability of the endemic equilibrium is discussed in a special case. We mainly investigate the effects of linear source, advection and diffusion on asymptotic profiles of the endemic equilibrium. It is shown that the linear source can enhance persistence of infectious disease, advection may induce the concentration phenomenon and small dispersal rate of infected individuals can eradicate the disease. These results may offer some implications on disease control and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.: An application of the invariance principle to reaction diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

    Article  MathSciNet  Google Scholar 

  2. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Contin. Dyn. Syst 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  3. Brown, K.J., Dunne, P.C., Gardner, R.A.: A semilinear parabolic system arising in the theory of superconductivity. J. Differ. Equ. 40, 232–252 (1981)

    Article  MathSciNet  Google Scholar 

  4. Cantrell, R., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Series in Mathematical and Computational Biology, Wiley, Chichester (2003)

    MATH  Google Scholar 

  5. Cui, R.: Asymptotic profiles of the endemic equilibrium of a reaction–diffusion–advection SIS epidemic model with saturated incidence rate. Discrete Contin. Dyn. Syst. Ser. B 26, 2997–3022 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Cui, R., Lam, K.-Y., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cui, R., Li, H., Peng, R., Zhou, M.: Concentration behavior of endemic equilibrium for a reaction–diffusion–advection SIS epidemic model with mass action infection mechanism. Calc. Var. Partial Differ. Equ. 60, 184 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cui, R., Lou, Y.: A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 261, 3305–3343 (2016)

    Article  MathSciNet  Google Scholar 

  9. Deng, K.: Asymptotic behavior of an SIR reaction–diffusion model with a linear source. Discrete Contin. Dyn. Syst. Ser. B 24, 5945–5957 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Deng, K., Wu, Y.: Dynamics of a susceptible-infected-susceptible epidemic reaction–diffusion model. Proc. R. Soc. Edinb. Sect. A 146, 929–946 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ge, J., Kim, K.I., Lin, Z., Zhu, H.: A SIS reaction–diffusion–advection model in a low-risk and high-risk domain. J. Differ. Equ. 259, 5486–5509 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equation of Second Order. Springer, New York (2001)

    Book  Google Scholar 

  13. Jiang, D., Wang, Z.-C., Zhang, L.: A reaction–diffusion–advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 23, 4557–4578 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Kuto, K., Matsuzawa, H., Peng, R.: Concentration profile of endemic equilibrium of a reaction–diffusion–advection SIS epidemic model. Calc. Var. Partial Differ. Equ. 56, 112 (2017)

    Article  MathSciNet  Google Scholar 

  15. Le, D.: Dissipativity and global attractors for a class of quasilinear parabolic systems. Commun. Partial Diff. Equ. 22, 413–433 (1997)

    Article  MathSciNet  Google Scholar 

  16. Lei, C., Xiong, J., Zhou, X.: Qualitative analysis on an SIS epidemic reaction–diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 25, 81–98 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Lei, C., Zhou, X.: Concentration phenomenon of the endemic equilibrium of a reaction–diffusion–advection SIS epidemic model with spontaneous infection. Discrete Contin. Dyn. Syst. Ser. B 27, 3077–3100 (2022)

    Article  MathSciNet  Google Scholar 

  18. Li, B., Bie, Q.: Long-time dynamics of an SIRS reaction–diffusion epidemic model. J. Math. Anal. Appl. 475, 1910–1926 (2019)

    Article  MathSciNet  Google Scholar 

  19. Li, B., Li, H., Tong, Y.: Analysis on a diffusive SIS epidemic model with logistic source. Z. Angew. Math. Phys. 68, 96 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, H., Peng, R., Wang, F.-B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2017)

    Article  MathSciNet  Google Scholar 

  21. Li, H., Peng, R., Wang, Z.-A.: On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78, 2129–2153 (2018)

    Article  MathSciNet  Google Scholar 

  22. Li, H., Peng, R., Xiang, T.: Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion. Eur. J. Appl. Math. 31, 26–56 (2020)

    Article  MathSciNet  Google Scholar 

  23. Lieberman, G.M.: Bounds for the steady-state Sel’kov model for arbitrary \(p\) in any number of dimensions. SIAM J. Math. Anal. 36, 1400–1406 (2005)

    Article  MathSciNet  Google Scholar 

  24. Lou, Y., Some challenging mathematical problems in evolution of dispersal and population dynamics. In: Tutorials in mathematical biosciences. IV, Lecture Notes in Mathematics, vol. 2008, pp. 171–205. Springer, Berlin (1922)

  25. Lou, Y., Ni, W.-M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  Google Scholar 

  26. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  27. Ni, W.-M.: The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, (2011)

  28. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)

    Article  Google Scholar 

  29. Peng, R., Liu, S.: Global stability of the steady states of an SIS epidemic reaction–diffusion model. Nonlinear Anal. 71, 239–247 (2009)

    Article  MathSciNet  Google Scholar 

  30. Peng, R., Shi, J., Wang, M.: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law. Nonlinearity 21, 1471–1488 (2008)

    Article  MathSciNet  Google Scholar 

  31. Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: effects of epidemic risk and population movement. Phys. D. 259, 8–25 (2013)

    Article  MathSciNet  Google Scholar 

  32. Peng, R., Zhao, X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  Google Scholar 

  33. Sun, X., Cui, R.: Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment. J. Math. Anal. Appl. 490, 124212 (2020)

    Article  MathSciNet  Google Scholar 

  34. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  Google Scholar 

  35. Wen, X., Ji, J., Li, B.: Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism. J. Math. Anal. Appl. 458, 715–729 (2018)

    Article  MathSciNet  Google Scholar 

  36. Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)

    Article  MathSciNet  Google Scholar 

  37. Zhang, J., Cui, R.: Asymptotic behavior of an SIS reaction–diffusion–advection model with saturation and spontaneous infection mechanism. Z. Angew. Math. Phys. 71, 150 (2020)

    Article  MathSciNet  Google Scholar 

  38. Zhao, X.-Q.: Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Can. Appl. Math. Q. 3, 473–495 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for careful reading and helpful comments which improved the initial manuscript. R Cui is the corresponding author and supported by National Natural Science Foundation of China (No. 12171125) and Natural Science Foundation of Heilongjiang Province (No. LH2020A012). X Chen is supported by Postgraduate Innovation Project of Harbin Normal University (No. HSDSSCX2021-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhao Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Cui, R. Qualitative analysis on a spatial SIS epidemic model with linear source in advective environments: I standard incidence. Z. Angew. Math. Phys. 73, 150 (2022). https://doi.org/10.1007/s00033-022-01795-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01795-9

Keywords

Mathematics Subject Classification

Navigation