Skip to main content
Log in

Convergence rate estimates of a higher-dimension reaction–diffusion system with density-dependent motility

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with a three-component parabolic system with density-dependent motility and general logistic term under homogeneous Neumann boundary conditions in a higher-dimensional smoothly bounded domain. This system was used to describe the dynamics of a population of cells interacting with a chemoattractant and a nutrient. Based on the method of energy estimates and Moser iteration, we establish the global boundedness and the time-decay rates of the classical solutions under suitable conditions. This results perfect the corresponding results in Jin et al. (J Differ Equ 269:6758–6793, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Yoon, C.: Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing. Nonlinearity 32, 1327–1351 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, Y.S., Wang, Z.A.: Prevention of blow up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 362, 553–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Desvillettes, L., Kim, Y.J., Trescases, A., Yoon, C.: A logarithmic chemotaxis model featuring global existence and aggregation. Nonlinear Anal. Real World Appl. 50, 562–582 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feireisl, E., Laurencot, P., Petzeltovo, H.: On convergence to equilibria for the Keller-Segel chemotaxis model. J. Differ. Equ. 236, 551–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, X.F., Tang, L.H., Liu, C.L., Huang, J.D., Hwa, T., Lenz, P.: Stripe formation in bacterial system with density-suppressed motility. Phys. Rev. Lett. 108, 198102 (2012)

    Article  Google Scholar 

  6. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nach. 195, 77–144 (1998)

    Article  MATH  Google Scholar 

  7. Herrero, M.A., Veĺazquez, J.J.L.: A blow-up mechanism for a chemotaxis model. AnnScuo. Norm. Sup. Pisa. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Horstemann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  Google Scholar 

  9. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hillen, T., Painter, K., Winkler, M.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Method Appl. Sci. 78, 165–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, H.Y., Wang, Z.A.: Boundedness, blow up and critical mass phenomenon in competing chemotaxis. J. Differ. Equ. 260, 162–196 (2016)

    Article  MATH  Google Scholar 

  12. Jin, H.Y., Kim, Y.J., Wang, Z.A.: Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math. 78, 1632–1657 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, H.Y., Shi, S.J., Wang, Z.A.: Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility. J. Differ. Equ. 269, 6758–6793 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, H.Y., Wang, Z.A.: Critical mass on the Keller-Segel system with signal-dependent motility. Proc. Am. Math. Soc. 148, 4855–4873 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  17. Liu, C., Fu, X., Liu, L., Ren, X., Chau, C.K.L., Li, S., Xiang, L., Zeng, H., Chen, G., Tang, L.H.: Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011)

    Article  Google Scholar 

  18. Liu, Y., Li, Z.P., Huang, J.F.: Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption. J. Differ. Equ. 269, 6365–6399 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyu, W.B., Wang, Q.Y.: A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source: global existence and asymptotic stabilization. Proc. R. Soc. Edinburgh Sect. A 151, 821–841 (2021)

    Article  Google Scholar 

  20. Ma, M., Peng, R., Wang, Z.A.: Stationary and non-stationary patterns of the density-suppressed motility model. Phys. D 402, 132259 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funk. Ekva. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel e quations. Funk. Ekva. 44, 441–469 (2001)

    MATH  Google Scholar 

  23. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)

    Article  MATH  Google Scholar 

  24. Pan, X., Wang, L.C.: Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. C. R. Math 359, 161–168 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Roberge, J.S., Iron, D., Kolokolnikov, T.: Pattern formation in bacterial colonies with density-dependent diffusion. Eur. J. Appl. Math. 30, 196–218 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, Y.S., Wang, Z.A.: Competing effects of attraction. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23, 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao, Y.S., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, Y.S., Winkler, M.: Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math. Models Methods Appl. Sci. 27, 1645–1683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller- Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, J.P., Wang, M.X.: Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth. J. Math. Phys. 60, 011507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yoon, C., Kim, Y.J.: Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion. Acta Appl. Math. 149, 101–123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the NSFC (Grant No. 11971082), the Chongqing Talent Support program (Grant No. cstc2022ycjh-bgzxm0169), Natural Science Foundation of Chongqing (Grant No. cstc2021jcyj-msxmX1051), the Fundamental Research Funds for the Central Universities (Grant Nos. 2020CDJQY-Z001, 2019CDJCYJ001), and Chongqing Key Laboratory of Analytic Mathematics and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Mu, C. & Xin, Q. Convergence rate estimates of a higher-dimension reaction–diffusion system with density-dependent motility. Z. Angew. Math. Phys. 73, 146 (2022). https://doi.org/10.1007/s00033-022-01762-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01762-4

Keywords

Mathematics Subject Classification

Navigation