Aliev, A.B., Isayeva, S.E.: Exponential stability of the nonlinear transmission acoustic problem. Math. Methods Appl. Sci. 41(16), 7055–7073 (2018)
MathSciNet
Article
Google Scholar
Ammari, K., Nicaise, S.: Stabilization of a transmission wave/plate equation. J. Differ. Equ. 249(3), 707–727 (2010)
MathSciNet
Article
Google Scholar
Andrade, D., Fatori, L.H., Muñoz Rivera, J.E.: Nonlinear transmission problem with a dissipative boundary condition of memory type. Electron. J. Differ. Equ. 2006(53), 1–16 (2006)
MathSciNet
MATH
Google Scholar
Bae, J.J.: Nonlinear transmission problem for wave equation with boundary condition of memory type. Acta Appl. Math. 110(2), 907–919 (2010)
MathSciNet
Article
Google Scholar
Beale, J.T., Rosencrans, S.I.: Acoustic boundary conditions. Bull. Am. Math. Soc. 80, 1276–1278 (1974)
MathSciNet
Article
Google Scholar
Beale, J.T.: Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J. 25(9), 895–917 (1976)
MathSciNet
Article
Google Scholar
Beale, J.T.: Acoustic scattering from locally reacting surfaces. Indiana Univ. Math. J. 26(2), 199–222 (1977)
MathSciNet
Article
Google Scholar
Boukhatem, Y., Benabderrahmane, B.: Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions. Nonlinear Anal. 97, 191–209 (2014)
MathSciNet
Article
Google Scholar
Boukhatem, Y., Benabderrahmane, B.: Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions. Acta Math. Sin. (Engl. Ser.) 32(2), 153–174 (2016)
MathSciNet
Article
Google Scholar
Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)
MathSciNet
Article
Google Scholar
Duyckaerts, T.: Optimal decay rates of the energy of a hyperbolic–parabolic system coupled by an interface. Asymptot. Anal. 51(1), 17–45 (2007)
MathSciNet
MATH
Google Scholar
Frota, C.L., Medeiros, L.A., Vicente, A.: Wave equation in domains with non-locally reacting boundary. Differ. Integral Equ. 24, 1001–1020 (2011)
MathSciNet
MATH
Google Scholar
Hao, J.H., Rao, B.P.: Influence of the hidden regularity on the stability of partially damped systems of wave equations. J. Math. Pures Appl. 143, 257–286 (2020)
MathSciNet
Article
Google Scholar
Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)
MathSciNet
MATH
Google Scholar
Liu, W.J.: Stabilization and controllability for the transmission wave equation. IEEE Trans. Automat. Control 46(12), 1900–1907 (2001)
MathSciNet
Article
Google Scholar
Liu, W.J.: Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions. Appl. Math. Lett. 38, 155–161 (2014)
MathSciNet
Article
Google Scholar
Liu, W.J., Sun, Y.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65(1), 125–134 (2014)
MathSciNet
Article
Google Scholar
Liu, W.J., Williams, G.H.: The exponential stability of the problem of transmission of the wave equation. Bull. Austral. Math. Soc. 57(2), 305–327 (1998)
MathSciNet
Article
Google Scholar
Liu, Z.Y., Rao, B.P.: Frequency domain approach for the polynomial stability of partially damped wave equations. J. Math. Anal. Appl. 335, 860–881 (2007)
MathSciNet
Article
Google Scholar
Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)
MathSciNet
Article
Google Scholar
Morse, P.M., Ingard, K.U.: Theoretical Acoustics. McGraw-Hill, New York (1968)
Google Scholar
Muñoz Rivera, J.E., Oquendo, H.P.: The transmission problem of viscoelastic waves. Acta Appl. Math. 62(1), 1–21 (2000)
MathSciNet
Article
Google Scholar
Oquendo, H.P.: Nonlinear boundary stabilization for a transmission problem in elasticity. Nonlinear Anal. 52(4), 1331–1345 (2003)
MathSciNet
Article
Google Scholar
Park, S.H.: General decay of a transmission problem for Kirchhoff type wave equations with boundary memory condition. Acta Math. Sci. Ser. B (Engl. Ed.) 34(5), 1395–1403 (2014)
MathSciNet
MATH
Google Scholar
Rauch, J., Zhang, X., Zuazua, E.: Polynomial decay for a hyperbolic–parabolic coupled system. J. Math. Pures Appl. 84(4), 407–470 (2005)
MathSciNet
Article
Google Scholar
Vicente, A.: Wave equation with acoustic/memory boundary conditions. Bol. Soc. Parana. Mat. 27(1), 29–39 (2009)
MathSciNet
MATH
Google Scholar
Vicente, A., Frota, C.L.: General decay of solutions of a wave equation with memory term and acoustic boundary condition. Math. Methods Appl. Sci. 40(6), 2140–2152 (2017)
MathSciNet
MATH
Google Scholar
Vila Bravo, J.C., Muñoz Rivera, J.E.: The transmission problem to thermoelastic plate of hyperbolic type. IMA J. Appl. Math. 74(6), 950–962 (2009)
MathSciNet
Article
Google Scholar
Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal. 184(1), 49–120 (2007)
MathSciNet
Article
Google Scholar