Chen, J., Huang, J., Beier, J.C., Cantrell, R.S., Cosner, C., Fuller, D.O., Zhang, G., Ruan, S.: Modeling and control of local outbreaks of West nile virus in the United States. Discrete Contin. Dyn. Syst. Ser B. 21, 2423–2449 (2016)
MathSciNet
Article
Google Scholar
Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67, 1107–1133 (2005)
MathSciNet
Article
Google Scholar
Ross, R.: An application of the theory of probabilities to the study of a priori pathometry. Proc. R. Soc. Lond A. 92, 204–230 (1916)
Article
Google Scholar
Macdonald, G.: The analysis of equilibrium in malaria. Trop. Dis. Bull. 49, 813–829 (1952)
Google Scholar
Macdonald, G.: The Epidemiology and Control of Malaria. Oxford University Press, London (1957)
Chamchod, F., Britton, N.F.: Analysis of a vector-bias model on malaria transmission. Bull. Math. Biol. 73, 639–657 (2011)
MathSciNet
Article
Google Scholar
Fitzgibbon, W.E., Morgan, J.J., Webb, G.F.: An outbreak vector-host epidemic model with spatial structure: the 2015–2016 Zika outbreak in Rio De Janeiro. Theor. Biol. Med. Modell 14, 7 (2017)
Article
Google Scholar
Wang, X., Zhao, X.Q.: A periodic vector-bias malaria model with incubation period. SIAM J. Appl Math. 77, 181–201 (2017)
MathSciNet
Article
Google Scholar
Magal, P., Webb, G.F., Wu, Y.: On a vector-host epidemic model with spatial structure. Nonlinearity 31, 5589–5614 (2018)
MathSciNet
Article
Google Scholar
Wang, J., Chen, Y.: Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl. Math. Lett. 100, 106052 (2020)
MathSciNet
Article
Google Scholar
Bailey, N.T.J.: The Mathematical Theory of Epidemics. Charles Griffin & Company Limited, London (1957)
Dietz, K.: Mathematical models for transmission and control of malaria. In: Wernsdorfer, W., McGregor, I. (eds.) Malaria: Principles and Practice of Malariology. Churchill Livingstone, Edinburgh (1988)
Busenberg, S., Vargas, C.: Modeling Chagas’ disease: variable population size and demographic implications. In Ovide Arino, David E. Axelrod, and Marek Kimmel, editors, Mathematical Population Dynamics, Lecture Notes Pure and Applied Mathematics. Boca Raton:CRC Press; (1991)
Inaba, H., Sekine, H.: A mathematical model for Chagas disease with infection-age-dependent infectivity. Math. Biosci. 190, 39–69 (2004)
MathSciNet
Article
Google Scholar
Velasco-Hernández, J.X.H.: An epidemiological model for the dynamics of Chaga’s disease. Biosystems 26, 127–134 (2004)
Article
Google Scholar
Xu, Z., Zhao, X.Q.: A vector-bias malaria model with incubation period and diffusion. Discrete Contin. Dyn. Syst. Ser. B. 17, 2615–2634 (2012)
MathSciNet
MATH
Google Scholar
Wang, W., Zhao, X.Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)
MathSciNet
Article
Google Scholar
Bai, Z., Peng, R., Zhao, X.Q.: A reaction-diffusion malaria model with seasonality and incubation period. J. Math. Biol. 77, 201–228 (2018)
MathSciNet
Article
Google Scholar
Lou, Y., Zhao, X.Q.: A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)
MathSciNet
Article
Google Scholar
Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21, 1–20 (2008)
MathSciNet
Article
Google Scholar
Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I. J Differ. Equ. 247, 1096–1119 (2009)
MathSciNet
Article
Google Scholar
Li, B., Li, H., Tong, T.: Analysis on a diffusive SIS epidemic model with logistic source. Z Angew Math. Phys. 68, 96 (2017)
MathSciNet
Article
Google Scholar
Cui, R., Lam, L., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)
MathSciNet
Article
Google Scholar
Han, S., Lei, C., Zhang, X.: Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism. Z Angew Math. Phys. 71, 190 (2020)
MathSciNet
Article
Google Scholar
Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)
MathSciNet
Article
Google Scholar
Fitzgibbon, W.E., Morgan, J.J., Webb, G.F., Wu, Y.: A vector-host epidemic model with spatial structure and age of infection. Nonlinear Anal. Real. World Appl. 41, 692–705 (2018)
MathSciNet
Article
Google Scholar
Jiang, D.H., Wang, Z.C.: The diffusive Logistic equation on periodically evolving domain. J. Math. Anal. Appl. 378, 93–111 (2018)
MathSciNet
Article
Google Scholar
Zhang, M., Lin, Z.: The diffusive model for Aedes Aegypti mosquito on a periodically evolving domain. Discrete Contin. Dyn. Syst. Ser B. 24, 4703–4720 (2019)
MathSciNet
MATH
Google Scholar
Zhu, M., Xu, Y., Cao, J.: The asymptotic profile of a dengue fever model on a periodically evolving domain. Appl. Math. Comput. 362, 124531 (2019)
MathSciNet
MATH
Google Scholar
Sprenger, D., Wuithiranyagool, T.: The discovery and distribution of Aedes albopictus in Harris county. Texas. J Am Mosq Control Assoc. 2, 217–219 (1986)
Google Scholar
Yee, D.A., Juliano, S.A., Vamosi, S.M.: Seasonal photoperiods alter developmental time and mass of an invasive mosquito Aedes albopictus (Diptera: Culicidae), across its north-south range in the United States. J. Med. Entomol. 49, 825–832 (2012)
Article
Google Scholar
Zhu, M., Lin, Z., Zhang, L.: The asymptotic profile of a dengue model on a growing domain driven by climate change. Appl. Math. Model. 83, 470–486 (2020)
MathSciNet
Article
Google Scholar
Baker, R.E., Maini, P.K.: A mechanism for morphogen-controlled domain growth. J. Math. Biol. 54, 597–622 (2007)
MathSciNet
Article
Google Scholar
Crampin, E.J., Gaffney, E.A., Maini, P.K.: Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120 (1999)
Article
Google Scholar
Crampin, E.J., Gaffney, E.A., Maini, P.K.: Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J Math Biol. 200244:107-128
Madzvamuse, A.: Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214, 239–263 (2006)
MathSciNet
Article
Google Scholar
World Health Organization. Dengue and Severe Dengue, (2021)
Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150, 131–151 (1998)
Article
Google Scholar
Tewa, J.J., Dimi, J.L., Bowong, S.: Lyapunov functions for a dengue disease transmission model. Chaos Soliton Fract. 39, 936–941 (2009)
MathSciNet
Article
Google Scholar
Villela, D.A.M., Bastos, L.S., D.E. Carvalho, L.M., Cruz, O.G., Gomes, M.F.C., Durovni, B., Lemos, M.C., Saraceni, V., Coelho, F.C., CodeçSo, C.T.: Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks. Epidemiol Infect. 2017;145:1649-1657
Killilea, M.E., Swei, A., Lane, R.S., Briggs, C.J., Ostfeld, R.S.: Spatial dynamics of Lyme disease: a review. EcoHealth 5, 167–195 (2008)
Article
Google Scholar
Yu, X., Zhao, X.Q.: A nonlocal spatial model for Lyme disease. J. Diff. Equ. 261, 340–372 (2016)
MathSciNet
Article
Google Scholar
Elementary, Acheson D., Dynamics, Fluid: Oxford Applied Mathematics and Computing Science Series. Clarendon Press, Oxford (1990)
Baines, M.J.: Moving Finite Element. Clarendon Press, Monographs on Numerical Analysis. Oxford (1994)
Madzvamuse, A., Maini, P.K.: Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. J. Comp. Phys. 225, 100–119 (2007)
MathSciNet
Article
Google Scholar
Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology. West Sussex:John Wiley and Sons Ltd.; (2003)
Alvarez-Caudevilla, P., Du, Y., Peng, R.: Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate enviroment. SIAM J. Math. Anal. 46, 499–531 (2014)
MathSciNet
Article
Google Scholar
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Berlin:Springer; (2001)
Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)
Ladyženskaja OA, Solonnikov UA, Ural’ceva NN. Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23. Providence:American Mathematical Society; (1968)
Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Berlin:Springer; (1981)
Lin, Z., Zhu, H.: Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409 (2017)
MathSciNet
Article
Google Scholar
Pu, L., Lin, Z.: Spatial transmission and risk assessment of West Nile virus on a growing domain. Math. Meth. Appl. Sci. 44, 6067–6085 (2021)
MathSciNet
Article
Google Scholar