Abstract
We are concerned with the properties of weak solutions for the relativistic Vlasov–Klein–Gordon system. Under some suitable regularity hypotheses on the density of particles and field, we show the renormalization property and global (local) entropy conservation laws. In addition, by virtue of the additional integrability condition \(\mathop {\int }\limits _{{\mathbb {R}}^3}\sqrt{1+|v|^{2}} fdv\in L^{\infty }((0, T); L^{2}({\mathbb {R}}_x^{3}))\), we prove that global (local) energy for the weak solutions are conserved.
Similar content being viewed by others
References
Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels, InterEditions, Éditions du Centre National de laRecherche Scientifique (CNRS), Meudon (1991)
Arsen’ev, A.A.: Global existence of a weak solution of Vlasov’s system of equations. U.S.S.R. Comp. Math. Math. Phys. 15, 131–143 (1975)
Bardos, C., Besse, N., Nguyen, T.T.: Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system. Q. Appl. Math. 2, 193–217 (2020)
Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Diff. Eq. 25, 342–364 (1977)
Chen, Z., Zhang, X.: Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy. Comm. Math. Phys. 343, 851–879 (2016)
DiPerna, R.J., Lions, P.L.: Solutions globales d’équations du type Vlasov-Poisson. C. R. Acad. Sci. Paris, Ser. I(307), 655–658 (1988)
DiPerna, R.J., Lions, P.L.: Global weak solutions of kinetic equations. Rend. Sem. Mat. Univers. Politecn. Torino 46, 259–288 (1988)
DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equations, global existence and weak stability. Ann. Math. 130, 321–366 (1989)
DiPerna, R.J., Lions, P.L.: Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42, 729–757 (1989)
Glassey, R.T., Strauss, W.A.: Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Rational Mech. Anal. 92, 59–90 (1986)
Glassey, R.T., Strauss, W.A.: High velocity particles in a collisionless plasma. Math. Methods Appl. Sci. 9, 46–52 (1987)
Glassey, R.T., Strauss, W.A.: Absence of shocks in an initially dilute collisionless plasma. Comm. Math. Phys. 113, 191–208 (1987)
Glassey, R.T., Schaeffer, J.: Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data. Comm. Math. Phys. 119, 353–384 (1988)
Glassey, R.T.: The cauchy problem in kinetic theory. SIAM, Philadelphia (1996)
Gwiazda, P., Michálek, M., Świerczewska-Gwiazda, A.: A note on weak solutions of conservation laws and energy/entropy conservation. Arch. Ration. Mech. Anal. 229, 1223–1238 (2018)
Ha, S.Y., Lee, H.: Global existence of classical solutions to the damped Vlasov-Klein-Gordon equations with small data. J. Math. Phys. 50, 053302–33 (2009)
Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Methods Appl. Sci. 6, 262–279 (1984)
Horst, E.: Symmetric plasmas and their decay. Comm. Math. Phys. 126, 613–633 (1990)
Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl. Sci. 16, 75–85 (1993)
Illner, R., Neunzert, H.: An existence theorem for the unmodified Vlasov equation. Math. Methods Appl. Sci. 1, 530–554 (1979)
Kunzinger, M., Rein, G., Steinbauer, R., Teschl, G.: Global weak solutions of the relativistic Vlasov-Klein-Gordon system. Comm. Math. Phys. 238, 367–378 (2003)
Kunzinger, M., Rein, G., Steinbauer, R., Teschl, G.: On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electron. J. Diff. Eq. 1, 1–17 (2005)
Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)
Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)
Miot, E.: A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system. Comm. Math. Phys. 346, 469–482 (2016)
Okabe, T., Ukai, S.: On classical solutions in the large in time of two-dimensional Vlasovs equation. Osaka J. Math. 15, 245–261 (1978)
Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eq. 95, 281–303 (1992)
Rein, G., Rendall, A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Comm. Math. Phys. 150, 561–583 (1992)
Rein, G.: Global weak solutions to the relativistic Vlasov-Maxwell system revisted. Comm. Math. Sci. 2, 145–158 (2004)
Rein, G.: Collisionless kinetic equation from astrophysics the Vlasov-Poisson system. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of differential equations: evolutionary equations. Elsevier, Amsterdam (2007)
Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Diff. Eq. 16, 1313–1335 (1991)
Tran, M., Nguyen, T.: An endpoint case of the renormalization property for the relativistic Vlasov-Maxwell system. J. Math. Phys. 61, 071512–10 (2020)
Wei, M., Zhu, W.: Global weak solutions of the relativistic Vlasov-Klein-Gordon system in two dimensions. Ann. Diff. Eq. 4, 511–518 (2007)
Wollman, S.: Global-in-time solutions of the two-dimensional Vlasov-Poisson system. Commun. Pure Appl. Math. 33, 173–197 (1980)
Wollman, S.: An existence and uniquness theorem for the Vlasov-Maxwell system. Commun. Pure Appl. Math. 37, 457–462 (1984)
Xiao, M., Zhang, X.: Global weak solutions for the relativistic Vlasov-Klein-Gordon system in two dimensions. Bull. Korean Math. Soc. 55, 591–598 (2018)
Xiao, M., Zhang, X.: Mild solutions for the relativistic Vlasov-Klein-Gordon system. Bull. Korean Math. Soc. 56, 1447–1465 (2019)
Acknowledgements
The authors would like to thank anonymous referees for their helpful comments and valuable suggestions concerning the presentation of this paper. This work is supported by the National Natural Science Foundation of China (Grant No. 12001406 and 11871024).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xiao, M., Zhang, X. The entropy conservation and energy conservation for the relativistic Vlasov–Klein–Gordon system. Z. Angew. Math. Phys. 73, 95 (2022). https://doi.org/10.1007/s00033-022-01737-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00033-022-01737-5