Skip to main content
Log in

The entropy conservation and energy conservation for the relativistic Vlasov–Klein–Gordon system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are concerned with the properties of weak solutions for the relativistic Vlasov–Klein–Gordon system. Under some suitable regularity hypotheses on the density of particles and field, we show the renormalization property and global (local) entropy conservation laws. In addition, by virtue of the additional integrability condition \(\mathop {\int }\limits _{{\mathbb {R}}^3}\sqrt{1+|v|^{2}} fdv\in L^{\infty }((0, T); L^{2}({\mathbb {R}}_x^{3}))\), we prove that global (local) energy for the weak solutions are conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels, InterEditions, Éditions du Centre National de laRecherche Scientifique (CNRS), Meudon (1991)

  2. Arsen’ev, A.A.: Global existence of a weak solution of Vlasov’s system of equations. U.S.S.R. Comp. Math. Math. Phys. 15, 131–143 (1975)

    Article  Google Scholar 

  3. Bardos, C., Besse, N., Nguyen, T.T.: Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system. Q. Appl. Math. 2, 193–217 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Diff. Eq. 25, 342–364 (1977)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z., Zhang, X.: Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy. Comm. Math. Phys. 343, 851–879 (2016)

    Article  MathSciNet  Google Scholar 

  6. DiPerna, R.J., Lions, P.L.: Solutions globales d’équations du type Vlasov-Poisson. C. R. Acad. Sci. Paris, Ser. I(307), 655–658 (1988)

    MATH  Google Scholar 

  7. DiPerna, R.J., Lions, P.L.: Global weak solutions of kinetic equations. Rend. Sem. Mat. Univers. Politecn. Torino 46, 259–288 (1988)

    MathSciNet  MATH  Google Scholar 

  8. DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equations, global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  Google Scholar 

  9. DiPerna, R.J., Lions, P.L.: Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42, 729–757 (1989)

    Article  MathSciNet  Google Scholar 

  10. Glassey, R.T., Strauss, W.A.: Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Rational Mech. Anal. 92, 59–90 (1986)

    Article  MathSciNet  Google Scholar 

  11. Glassey, R.T., Strauss, W.A.: High velocity particles in a collisionless plasma. Math. Methods Appl. Sci. 9, 46–52 (1987)

    Article  MathSciNet  Google Scholar 

  12. Glassey, R.T., Strauss, W.A.: Absence of shocks in an initially dilute collisionless plasma. Comm. Math. Phys. 113, 191–208 (1987)

    Article  MathSciNet  Google Scholar 

  13. Glassey, R.T., Schaeffer, J.: Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data. Comm. Math. Phys. 119, 353–384 (1988)

    Article  MathSciNet  Google Scholar 

  14. Glassey, R.T.: The cauchy problem in kinetic theory. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  15. Gwiazda, P., Michálek, M., Świerczewska-Gwiazda, A.: A note on weak solutions of conservation laws and energy/entropy conservation. Arch. Ration. Mech. Anal. 229, 1223–1238 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ha, S.Y., Lee, H.: Global existence of classical solutions to the damped Vlasov-Klein-Gordon equations with small data. J. Math. Phys. 50, 053302–33 (2009)

    Article  MathSciNet  Google Scholar 

  17. Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Methods Appl. Sci. 6, 262–279 (1984)

    Article  MathSciNet  Google Scholar 

  18. Horst, E.: Symmetric plasmas and their decay. Comm. Math. Phys. 126, 613–633 (1990)

    Article  MathSciNet  Google Scholar 

  19. Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl. Sci. 16, 75–85 (1993)

    Article  MathSciNet  Google Scholar 

  20. Illner, R., Neunzert, H.: An existence theorem for the unmodified Vlasov equation. Math. Methods Appl. Sci. 1, 530–554 (1979)

    Article  MathSciNet  Google Scholar 

  21. Kunzinger, M., Rein, G., Steinbauer, R., Teschl, G.: Global weak solutions of the relativistic Vlasov-Klein-Gordon system. Comm. Math. Phys. 238, 367–378 (2003)

    Article  MathSciNet  Google Scholar 

  22. Kunzinger, M., Rein, G., Steinbauer, R., Teschl, G.: On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electron. J. Diff. Eq. 1, 1–17 (2005)

    MATH  Google Scholar 

  23. Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MathSciNet  Google Scholar 

  24. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)

    Article  MathSciNet  Google Scholar 

  25. Miot, E.: A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system. Comm. Math. Phys. 346, 469–482 (2016)

    Article  MathSciNet  Google Scholar 

  26. Okabe, T., Ukai, S.: On classical solutions in the large in time of two-dimensional Vlasovs equation. Osaka J. Math. 15, 245–261 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eq. 95, 281–303 (1992)

    Article  MathSciNet  Google Scholar 

  28. Rein, G., Rendall, A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Comm. Math. Phys. 150, 561–583 (1992)

    Article  MathSciNet  Google Scholar 

  29. Rein, G.: Global weak solutions to the relativistic Vlasov-Maxwell system revisted. Comm. Math. Sci. 2, 145–158 (2004)

    Article  Google Scholar 

  30. Rein, G.: Collisionless kinetic equation from astrophysics the Vlasov-Poisson system. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of differential equations: evolutionary equations. Elsevier, Amsterdam (2007)

    Google Scholar 

  31. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Diff. Eq. 16, 1313–1335 (1991)

    Article  MathSciNet  Google Scholar 

  32. Tran, M., Nguyen, T.: An endpoint case of the renormalization property for the relativistic Vlasov-Maxwell system. J. Math. Phys. 61, 071512–10 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wei, M., Zhu, W.: Global weak solutions of the relativistic Vlasov-Klein-Gordon system in two dimensions. Ann. Diff. Eq. 4, 511–518 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Wollman, S.: Global-in-time solutions of the two-dimensional Vlasov-Poisson system. Commun. Pure Appl. Math. 33, 173–197 (1980)

    Article  MathSciNet  Google Scholar 

  35. Wollman, S.: An existence and uniquness theorem for the Vlasov-Maxwell system. Commun. Pure Appl. Math. 37, 457–462 (1984)

    Article  Google Scholar 

  36. Xiao, M., Zhang, X.: Global weak solutions for the relativistic Vlasov-Klein-Gordon system in two dimensions. Bull. Korean Math. Soc. 55, 591–598 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Xiao, M., Zhang, X.: Mild solutions for the relativistic Vlasov-Klein-Gordon system. Bull. Korean Math. Soc. 56, 1447–1465 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their helpful comments and valuable suggestions concerning the presentation of this paper. This work is supported by the National Natural Science Foundation of China (Grant No. 12001406 and 11871024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixia Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Zhang, X. The entropy conservation and energy conservation for the relativistic Vlasov–Klein–Gordon system. Z. Angew. Math. Phys. 73, 95 (2022). https://doi.org/10.1007/s00033-022-01737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01737-5

Keywords

MR Subject Classification

Navigation