Skip to main content
Log in

Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the following Kirchhoff-type equation of the form

$$\begin{aligned} -\left( a+b\int \limits _{\,\,\,\mathbb {R}^3}|\nabla u|^2\right) \Delta u+(1+\mu g(x))u=\lambda \left( \frac{1}{|x|^{\alpha }}*|u|^p\right) |u|^{p-2}u+|u|^4u,\quad x\in \mathbb {R}^3\end{aligned}$$

where \(a>0, b\ge 0\) are constants, \(\lambda , \mu \) are positive parameters, \(\alpha \in (0,3), p\in \left( 2, 6-\alpha \right) \) and \(g\in C(\mathbb {R}^3)\) satisfies some conditions. By the mountain pass theorem, we establish the existence of ground state solutions. Besides, the concentration of ground state solutions is also described as \(\mu \rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996). https://doi.org/10.1090/S0002-9947-96-01532-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983). https://doi.org/10.1002/cpa.3160360405

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, P., Liu, X.: Ground states for Kirchhoff equation with Hartree-type nonlinearities. J. Math. Anal. Appl. 473, 587–608 (2019). https://doi.org/10.1016/j.jmaa.2018.12.076

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Zhang, B., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. 9, 148–167 (2020). https://doi.org/10.1515/anona-2018-0147

    Article  MathSciNet  MATH  Google Scholar 

  5. Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013). https://doi.org/10.1016/j.jmaa.2013.04.081

    Article  MathSciNet  MATH  Google Scholar 

  6. Figueiredo, G.M.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401, 706–713 (2013). https://doi.org/10.1016/j.jmaa.2012.12.053

    Article  MathSciNet  MATH  Google Scholar 

  7. Figueiredo, G.M., Santos Junior, J.R.: Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ. 25, 853–868 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  9. Li, G., Ye, H.: Existence of positive solutions for nonlinear Kirchhoff type problems in \(\mathbb{R}^3\) with critical Sobolev exponent. Math. Methods Appl. Sci. 37, 2570–2584 (2014). https://doi.org/10.1002/mma.3000

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Ma, S.: Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22, 28 (2020). https://doi.org/10.1142/S0219199719500238

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y., Li, X., Ma, S.: Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities. Results Math. 74, 26 (2019). https://doi.org/10.1007/s00025-018-0943-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y.-Y., Li, G.-D., Tang, C.-L.: Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well. Nonlinear Anal. 200, 21 (2020). https://doi.org/10.1016/j.na.2020.111997

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y.-Y., Li, G.-D., Tang, C.-L.: Existence and concentration of solutions for Choquard equations with steep potential well and doubly critical exponents. Adv. Nonlinear Stud. 21, 135–154 (2021). https://doi.org/10.1515/ans-2020-2110

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, S., Shi, S.: Soliton solutions to Kirchhoff type problems involving the critical growth in \(\mathbb{R}^N\). Nonlinear Anal. 81, 31–41 (2013). https://doi.org/10.1016/j.na.2012.12.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57, 93–105 (1976/77). https://doi.org/10.1002/sapm197757293

  16. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001). https://doi.org/10.1090/gsm/014

  17. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of the International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), vol. 30 of North-Holland Math. Stud., pp. 284–346. North-Holland, Amsterdam-New York (1978)

  18. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980). https://doi.org/10.1016/0362-546X(80)90016-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü, D.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. 99, 35–48 (2014). https://doi.org/10.1016/j.na.2013.12.022

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010). https://doi.org/10.1007/s00205-008-0208-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, T.F., Muñoz Rivera, J.E.: Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16, 243–248 (2003). https://doi.org/10.1016/S0893-9659(03)80038-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,. Nonlinear Anal. 70, 1275–1287 (2009). https://doi.org/10.1016/j.na.2008.02.011

  23. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013). https://doi.org/10.1016/j.jfa.2013.04.007

    Article  MathSciNet  MATH  Google Scholar 

  24. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006). https://doi.org/10.1016/j.jde.2005.03.006

    Article  MathSciNet  MATH  Google Scholar 

  25. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston, MA (1996)

  26. Xie, Q.-L., Wu, X.-P., Tang, C.-L.: Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Commun. Pure Appl. Anal. 12, 2773–2786 (2013). https://doi.org/10.3934/cpaa.2013.12.2773

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye, Y.: Ground state solutions for Kirchhoff-type problems with critical nonlinearity. Taiwan. J. Math. 24, 63–79 (2020). https://doi.org/10.11650/tjm/190402

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No.12071387).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Gan, W. & Jiang, S. Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities. Z. Angew. Math. Phys. 73, 103 (2022). https://doi.org/10.1007/s00033-022-01721-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01721-z

Keywords

Mathematics Subject Classification

Navigation