Abstract
We consider the following Kirchhoff-type equation of the form
where \(a>0, b\ge 0\) are constants, \(\lambda , \mu \) are positive parameters, \(\alpha \in (0,3), p\in \left( 2, 6-\alpha \right) \) and \(g\in C(\mathbb {R}^3)\) satisfies some conditions. By the mountain pass theorem, we establish the existence of ground state solutions. Besides, the concentration of ground state solutions is also described as \(\mu \rightarrow \infty \).
Similar content being viewed by others
References
Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996). https://doi.org/10.1090/S0002-9947-96-01532-2
Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983). https://doi.org/10.1002/cpa.3160360405
Chen, P., Liu, X.: Ground states for Kirchhoff equation with Hartree-type nonlinearities. J. Math. Anal. Appl. 473, 587–608 (2019). https://doi.org/10.1016/j.jmaa.2018.12.076
Chen, S., Zhang, B., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. 9, 148–167 (2020). https://doi.org/10.1515/anona-2018-0147
Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013). https://doi.org/10.1016/j.jmaa.2013.04.081
Figueiredo, G.M.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401, 706–713 (2013). https://doi.org/10.1016/j.jmaa.2012.12.053
Figueiredo, G.M., Santos Junior, J.R.: Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ. 25, 853–868 (2012)
Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
Li, G., Ye, H.: Existence of positive solutions for nonlinear Kirchhoff type problems in \(\mathbb{R}^3\) with critical Sobolev exponent. Math. Methods Appl. Sci. 37, 2570–2584 (2014). https://doi.org/10.1002/mma.3000
Li, X., Ma, S.: Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22, 28 (2020). https://doi.org/10.1142/S0219199719500238
Li, Y., Li, X., Ma, S.: Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities. Results Math. 74, 26 (2019). https://doi.org/10.1007/s00025-018-0943-1
Li, Y.-Y., Li, G.-D., Tang, C.-L.: Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well. Nonlinear Anal. 200, 21 (2020). https://doi.org/10.1016/j.na.2020.111997
Li, Y.-Y., Li, G.-D., Tang, C.-L.: Existence and concentration of solutions for Choquard equations with steep potential well and doubly critical exponents. Adv. Nonlinear Stud. 21, 135–154 (2021). https://doi.org/10.1515/ans-2020-2110
Liang, S., Shi, S.: Soliton solutions to Kirchhoff type problems involving the critical growth in \(\mathbb{R}^N\). Nonlinear Anal. 81, 31–41 (2013). https://doi.org/10.1016/j.na.2012.12.003
Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57, 93–105 (1976/77). https://doi.org/10.1002/sapm197757293
Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001). https://doi.org/10.1090/gsm/014
Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of the International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), vol. 30 of North-Holland Math. Stud., pp. 284–346. North-Holland, Amsterdam-New York (1978)
Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980). https://doi.org/10.1016/0362-546X(80)90016-4
Lü, D.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. 99, 35–48 (2014). https://doi.org/10.1016/j.na.2013.12.022
Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010). https://doi.org/10.1007/s00205-008-0208-3
Ma, T.F., Muñoz Rivera, J.E.: Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16, 243–248 (2003). https://doi.org/10.1016/S0893-9659(03)80038-1
Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,. Nonlinear Anal. 70, 1275–1287 (2009). https://doi.org/10.1016/j.na.2008.02.011
Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013). https://doi.org/10.1016/j.jfa.2013.04.007
Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006). https://doi.org/10.1016/j.jde.2005.03.006
Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston, MA (1996)
Xie, Q.-L., Wu, X.-P., Tang, C.-L.: Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Commun. Pure Appl. Anal. 12, 2773–2786 (2013). https://doi.org/10.3934/cpaa.2013.12.2773
Ye, Y.: Ground state solutions for Kirchhoff-type problems with critical nonlinearity. Taiwan. J. Math. 24, 63–79 (2020). https://doi.org/10.11650/tjm/190402
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supported by National Natural Science Foundation of China (No.12071387).
Rights and permissions
About this article
Cite this article
Yin, L., Gan, W. & Jiang, S. Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities. Z. Angew. Math. Phys. 73, 103 (2022). https://doi.org/10.1007/s00033-022-01721-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00033-022-01721-z