Skip to main content

Advertisement

Log in

Blowup time estimates for the heat equation with a nonlocal boundary condition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the blowup time for the heat equation \(u_{t}=\Delta u\) in a bounded domain \(\Omega \subset {\mathbb {R}}^{n}(n\geqslant 2)\) with the nonlocal boundary condition, where the normal derivative \(\partial u/\partial \mathbf {\eta }=\int \limits _{\Omega }u^{p}\mathrm {d}z\) on one part of boundary \(\Gamma _{1}\subseteq \partial \Omega \) for some \(p>1\), while \(\partial u/\partial \mathbf {\eta }=0\) on the rest part of the boundary. By constructing suitable auxiliary functions and analyzing the representation formula of u, we establish the finite time blowup of the solution and get both upper and lower bounds for the blowup time in terms of the parameter p, the initial value \(u_{0}(x)\) and the volume of \(\Gamma _{1}\). In many other studies, they require the convexity of the domain \(\Omega \) and only deal with the case \(\Gamma _{1}=\partial \Omega \). In this article, we remove the convexity assumption and consider the problem with \(\Gamma _{1}\subseteq \partial \Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bicadze, A.V., Samarskii, A.A.: Some elementary generalizations of linear elliptic boundary value problems. Dokl. Akad. Nauk SSSR 185, 739–740 (1969)

    MathSciNet  Google Scholar 

  2. Carl, S., Lakshmikantham, V.: Generalized quasilinearization method for reaction–diffusion equations under nonlinear and nonlocal flux conditions. J. Math. Anal. Appl. 271(1), 182–205 (2002)

    Article  MathSciNet  Google Scholar 

  3. Choi, J., Kim, S.: Green’s function for second order parabolic systems with Neumann boundary condition. J. Differ. Equ. 254(7), 2834–2860 (2013)

    Article  MathSciNet  Google Scholar 

  4. Day, W.A.: Extensions of a property of the heat equation to linear thermoelasticity and other theories. Q. Appl. Math. 40(3), 319–330 (1982)

    Article  MathSciNet  Google Scholar 

  5. Day, W.A.: A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Q. Appl. Math. 40(4), 468–475 (1983)

    Article  MathSciNet  Google Scholar 

  6. Dehghan, M.: The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fract. 32(2), 661–675 (2007)

    Article  MathSciNet  Google Scholar 

  7. Deng, K.: Comparison principle for some nonlocal problems. Q. Appl. Math. 50(3), 517–522 (1992)

    Article  MathSciNet  Google Scholar 

  8. Ding, J.T., Kou, W.: Blow-up solutions for reaction diffusion equations with nonlocal boundary conditions. J. Math. Anal. Appl. 470(1), 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  9. Friedman, A.: Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Q. Appl. Math. 44(3), 401–407 (1986)

    Article  MathSciNet  Google Scholar 

  10. Gladkov, A.L., Kavitova, T.V.: Global existence of solutions of initial boundary value problem for nonlocal parabolic equation with nonlocal boundary condition. Math. Methods Appl. Sci. 43(8), 5464–5479 (2020)

    Article  MathSciNet  Google Scholar 

  11. Gladkov, A.L., Nikitin, A.I.: On global existence of solutions of initial boundary value problem for a system of semilinear parabolic equations with nonlinear nonlocal Neumann boundary conditions. Differ. Equ. 54(1), 86–105 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hu, B.: Blow-up Theories for Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 2018. Springer, Heidelberg (2011)

  13. Hu, B.: Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition. Differ. Integr. Equ. 9(5), 891–901 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Hu, B., Yin, H.M.: The profile near blowup time for solution of the heat equation with a nonlinear boundary condition. Trans. Am. Math. Soc. 346(1), 117–135 (1994)

    Article  MathSciNet  Google Scholar 

  15. Levitt, D.G.: Interpretation of biological ion channel flux data: reaction-rate versus continuum theory. Ann. Rev. Biophys. Biophys. Chem. 15, 29–57 (1986)

    Article  Google Scholar 

  16. Liu, B.C., Dong, M.Z., Li, F.J.: Asymptotic properties of blow-up solutions in reaction–diffusion equations with nonlocal boundary flux. Z. Angew. Math. Phys. 69(27), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Liu, B.C., Lin, H.Y., Li, F.J., Wang, X.Y.: Blow-up analyses in reaction–diffusion equations with nonlinear nonlocal boundary flux. Z. Angew. Math. Phys. 70(106), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Lu, H.Q., Zhang, Z.C.: Blowup time estimates for a parabolic \(p\)-Laplacian equation with nonlinear gradient terms. Z. Angew. Math. Phys. 70(90), 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Marras, M., Vernier Piro, S.: Reaction–diffusion problems under non-local boundary conditions with blow-up solutions. J. Inequal. Appl. 167, 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  20. McGill, P., Schumaker, M.F.: Boundary conditions for single-ion diffusion. Biophys. J. 71, 1723–1742 (1996)

    Article  Google Scholar 

  21. Pao, C.V.: Dynamics of reaction–diffusion equations with nonlocal boundary conditions. Q. Appl. Math. 53(1), 173–186 (1995)

    Article  MathSciNet  Google Scholar 

  22. Pao, C.V.: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions. J. Math. Anal. Appl. 195(3), 702–718 (1995)

    Article  MathSciNet  Google Scholar 

  23. Pao, C.V.: Asymptotic behavior of solutions of reaction–diffusion equations with nonlocal boundary conditions. J. Comput. Appl. Math. 88(1), 225–238 (1998)

    Article  MathSciNet  Google Scholar 

  24. Payne, L.E., Schaefer, P.W.: Bounds for blow-up time for the heat equation under nonlinear boundary conditions. Proc. R. Soc. Edinb. Sect. A 139(6), 1289–1296 (2009)

    Article  MathSciNet  Google Scholar 

  25. Yang, X., Zhou, Z.F.: Improvements on lower bounds for the blow-up time under local nonlinear Neumann conditions. J. Differ. Equ. 265(3), 830–862 (2018)

    Article  MathSciNet  Google Scholar 

  26. Yang, X., Zhou, Z.F.: Lifespan estimates via Neumann heat kernel. Z. Angew. Math. Phys. 70(30), 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Yin, H.M.: On a class of parabolic equations with nonlocal boundary conditions. J. Math. Anal. Appl. 294(2), 712–728 (2004)

    Article  MathSciNet  Google Scholar 

  28. Yousefi, S.A., Behroozifar, M., Dehghan, M.: The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass. J. Comput. Appl. Math. 235(17), 5272–5283 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was completed during the first author’s visit to Department of Applied and Computational Mathematics and Statistics, University of Notre Dame. The third author is partially supported by the National Natural Science Foundation of China (No. 12071044). The authors also thank the referee and the editor for the careful reading of the manuscript and for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengce Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Hu, B. & Zhang, Z. Blowup time estimates for the heat equation with a nonlocal boundary condition. Z. Angew. Math. Phys. 73, 60 (2022). https://doi.org/10.1007/s00033-022-01698-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01698-9

Keywords

Mathematics Subject Classification

Navigation