Skip to main content
Log in

The role of strong Allee effect and protection zone on a diffusive prey–predator model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The influence of strong Allee effect and protection zone on the dynamical behavior and patterns of the reaction-diffusive model is investigated. Firstly, the existence and stability of the positive constant steady-states are determined. Secondly, we analyze the existence and nonexistence of nonconstant positive steady-states by the implicit function theorem, energy method and Leray–Schauder degree theory. Following, the dynamical properties are also obtained and in particular it is shown that the overexploitation phenomenon may occur. Finally, we show that the overexploitation phenomenon can be avoided by setting up a suitable protection zone for the prey. Hence, the strong Allee effect and protection zone enrich the complexity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, S.B., Du, Y., Peng, R.: Traveling waves for a generalized Holling-Tanner predator-prey model. J. Differ. Equ. 263, 7782–7814 (2017)

    Article  MathSciNet  Google Scholar 

  2. Allee, W.C.: Animal Aggregations. A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  3. Artidi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: Ratio-Dependence. J. Theoret. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  4. Beretta, E., Kuang, Y.: Global analyses in some delayed ratio-dependent predator-prey systems. Nonlinear Anal. 32, 381–408 (1998)

    Article  MathSciNet  Google Scholar 

  5. Boukal, D.S., Sabelis, M.W., Berec, L.: How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol. 72, 136–147 (2007)

    Article  Google Scholar 

  6. Chen, X., Lam, K.Y., Lou, Y.: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete Contin. Dyn. Syst. 32, 3841–3859 (2012)

    Article  MathSciNet  Google Scholar 

  7. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  8. Cui, R., Shi, J., Wu, B.: Strong Allee effect in a diffusive predator-prey system with a protection zone. J. Differ. Equ. 256, 108–129 (2014)

    Article  MathSciNet  Google Scholar 

  9. Du, K., Peng, R., Sun, N.: The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect. J. Differ. Equ. 266, 7327–7356 (2019)

    Article  MathSciNet  Google Scholar 

  10. Du, Y., Lou, Y.: Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A 131, 321–349 (2001)

    Article  MathSciNet  Google Scholar 

  11. Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differ. Equ. 246, 3932–3956 (2009)

    Article  MathSciNet  Google Scholar 

  12. Du, Y., Shi, J.: A diffusive predator-prey model with a protection zone. J. Differ. Equ. 229, 63–91 (2006)

    Article  MathSciNet  Google Scholar 

  13. Du, Y., Shi, J.: Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans. Am. Math. 359, 4557–4593 (2007)

    Article  MathSciNet  Google Scholar 

  14. Du, Y., Liang, X.: A diffusive competition model with a protection zone. J. Differ. Equ. 244, 61–86 (2008)

    Article  MathSciNet  Google Scholar 

  15. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  16. Gupta, R.P., Banerjee, M., Chandra, P.: Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation. Commun. Nonlinear Sci. Numer. Simul. 19, 2382–2405 (2014)

    Article  MathSciNet  Google Scholar 

  17. Haque, M.: Ratio-dependent predator-prey models of interacting populations. Bull. Math. Biol. 71, 430–452 (2009)

    Article  MathSciNet  Google Scholar 

  18. He, X., Ni, W.M.: The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs homogeneity. J. Differ. Equ. 254, 528–546 (2013)

    Article  MathSciNet  Google Scholar 

  19. He, X., Ni, W.M.: Global dynamics of the Lotka–Volterra competition-diffusion system: Diffusion and spatial heterogeneity I. Commun. Pure Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis Menten type ratio-dependent predator-prey system. J. Math. Biol. 42, 489–506 (2001)

    Article  MathSciNet  Google Scholar 

  21. Hsu, S.B., Hwang, T.W., Kuang, Y.: Rich dynamics of ratio-dependent one prey two predators model. J. Math. Biol. 43, 377–396 (2001)

    Article  MathSciNet  Google Scholar 

  22. Keitt, T.H., Lewis, M.A., Holt, R.D.: Allee effects, invasion pinning, and species’ borders. Am. Nat. 157, 203–216 (2001)

    Article  Google Scholar 

  23. Liermann, M., Hilborn, R.: Depensation: eidence, models and implications. Fish Fish. 2, 33–58 (2001)

    Article  Google Scholar 

  24. Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solution to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)

    Article  MathSciNet  Google Scholar 

  25. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, New York (1925)

    MATH  Google Scholar 

  26. Lou, Y., Ni, W.M.: Diffusion vs cross-diffusion: An elliptic approach. J. Differ. Equ. 154, 157–190 (1999)

    Article  MathSciNet  Google Scholar 

  27. Ni, W., Wang, M.: Dynamical and patterns of a Leslie-Gower prey-predator model with strong Allee effect in prey. J. Differ. Equ. 261, 4244–4274 (2016)

    Article  Google Scholar 

  28. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1982)

    Google Scholar 

  29. Petrovskii, S.V., Morozov, A.Y., Venturino, E.: Allee effect makes possible patchy invasion in a predator-prey system. Ecol. Lett. 5, 345–352 (2002)

    Article  Google Scholar 

  30. Shi, J., Shivaji, R.: Persistence in reaction diffusion model with weak Allee effect. J. Math. Biol. 52, 807–829 (2006)

    Article  MathSciNet  Google Scholar 

  31. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 5–72 (1952)

    MathSciNet  MATH  Google Scholar 

  32. Van Voorn, G.A.K., Hemerik, L., Bore, M.P., Kooi, B.W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci. 209, 451–469 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wang, J., Shi, J., Wei, J.: Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey. J. Differ. Equ. 251, 1276–1304 (2011)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Wang, M.: The dynamics of a predator-prey model with diffusion and indirect prey-taxis. J. Differ. Equ. 32, 1297–1310 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Wang, M.: A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment. J. Funct. Anal. 270, 483–508 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, M.H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97 (2001)

    Article  MathSciNet  Google Scholar 

  37. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response. Nonlinear Anal. Real World Appl. 11, 3711–3721 (2010)

    Article  MathSciNet  Google Scholar 

  38. Zhao, X.Q., Zhou, P.: On a Lotka-Volterra competition model: the effects of advection and spatial variation. Calc. Var. Partial Differ. Equ. 55, 1–25 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable comments and suggestions which have contributed considerably to the improved presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Fang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the NSF of China (U1604180)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JF., Lou, W. & Wang, YX. The role of strong Allee effect and protection zone on a diffusive prey–predator model. Z. Angew. Math. Phys. 73, 41 (2022). https://doi.org/10.1007/s00033-022-01675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01675-2

Keywords

Mathematical Subject Classification

Navigation