Skip to main content
Log in

Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The asymptotic profiles of the endemic equilibrium play an important role in determining whether or not eliminating the infectious disease when considering the dispersal rates of populations approach to zero or infinity. This paper aims to provide a qualitative analysis of a reaction–diffusion Susceptible–Infective–Recovered–Susceptible epidemic model with standard incidence mechanism and a logistic source in a spatially heterogeneous environment. For this purpose, we first estimate the uniform bounds of the solution of the model. By the theory of uniform persistence, we explore the threshold-type result of the model in terms of the basic reproduction number \(\Re _0\). Compared to the results in Han et al. (Z Angew Math Phys 71:190, 2020) where the growth of susceptible population is adopt by linear source, our theoretical results reveal that controlling the dispersal rates of population cannot eradicate the disease, and the infection component of the steady state solution approaches to nonzero level when the dispersal rates of populations approach to zero or infinity. We also obtain that varying total population enhances persistence of infectious disease, the results are consistent with Li et al. (Z Angew Math Phys 68:96, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Contin. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  2. Cui, R., Lou, Y.: A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 261, 3305–3343 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cui, R., Lam, K., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, New York (2004)

    Book  Google Scholar 

  5. Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differ. Equ. 246, 3932–3956 (2009)

    Article  MathSciNet  Google Scholar 

  6. Deng, K., Wu, Y.: Dynamics of an SIS epidemic reaction–diffusion model. Proc. R. Soc. Edinburgh Sect. A 146(5), 929–946 (2016)

    Article  Google Scholar 

  7. Ge, J., Kim, K., Lin, Z., Zhu, H.: A SIS reaction–diffusion–advection model in a low-risk and high-risk domain. J. Differ. Equ. 259, 5486–5509 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equation of Second Order. Springer, Berlin (2001)

    Book  Google Scholar 

  9. Han, S., Lei, C., Zhang, X.: Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism. Z. Angew. Math. Phys. 71–190 (2020)

  10. Li, H., Peng, R., Wang, F.-B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2017)

    Article  MathSciNet  Google Scholar 

  11. Li, B., Li, H., Tong, T.: Analysis on a diffusive SIS epidemic model with logistic source. Z. Angew. Math. Phys. 68, 96 (2017)

    Article  MathSciNet  Google Scholar 

  12. Lou, Y., Ni, W.-M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  Google Scholar 

  13. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  14. Nadin, G.: The principal eigenvalue of a space-time periodic parabolic operator. Ann. Mat. Pura Appl. 188, 269–295 (2009)

    Article  MathSciNet  Google Scholar 

  15. Peng, R., Liu, S.: Global stability of the steady states of an SIS epidemic reaction–diffusion model. Nonlinear Anal.: TMA 71, 239–247 (2009)

    Article  MathSciNet  Google Scholar 

  16. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)

    Article  Google Scholar 

  17. Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: effects of epidemic risk and population movement. Phys. D 259, 8–25 (2013)

    Article  MathSciNet  Google Scholar 

  18. Peng, R., Zhao, X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  Google Scholar 

  19. Peng, R., Shi, J., Wang, M.: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law. Nonlinearity 21, 1471–1488 (2008)

    Article  MathSciNet  Google Scholar 

  20. Magal, P., Webb, G.F., Wu, Y.: On a vector-host epidemic model with spatial structure. Nonlinearity 31, 5589–5614 (2018)

    Article  MathSciNet  Google Scholar 

  21. Tong, Y., Lei, C.: An SIS epidemic reaction–diffusion model with spontaneous infection in a spatially heterogeneous environment. Nonlinear Anal.: RWA 41, 443–460 (2018)

    Article  MathSciNet  Google Scholar 

  22. Thieme, H.R.: Convergence results and a Poincare–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  Google Scholar 

  23. Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wang, W., Zhao, X.Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)

    Article  MathSciNet  Google Scholar 

  25. Zhu, S., Wang, J.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with spontaneous infection and a logistic source. Commun. Pure Appl. Anal. 19(6), 3323–3340 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhu, S., Wang, J.: Analysis of a diffusive SIS epidemic model with spontaneous infection and a linear source in spatially heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 25(5), 1999–2019 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Zhao, X.-Q.: Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Can. Appl. Math. Q. 3, 473–495 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Wang was supported by National Natural Science Foundation of China (Nos. 12071115, 11871179) and Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems. S. Zhu was supported by the National Natural Science Foundation of China (Nos. 12171234,11631006, 11790272), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Zhu, S. & Wang, J. Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source. Z. Angew. Math. Phys. 73, 36 (2022). https://doi.org/10.1007/s00033-021-01667-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01667-8

Keywords

Mathematics Subject Classification

Navigation