Skip to main content
Log in

Extremal hinged lattices do not obey the theory of elasticity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Hinged lattices that attain extremal values of Poisson’s ratio do not in general obey the theory of elasticity. Hinged structures that attain a Poisson’s ratio of − 1 are easy to stretch or deform volumetrically but they resist bending, in contrast to the predictions of elasticity theory. Their behavior corresponds to that of a Cosserat solid with divergent characteristic length. Hinged structures that attain a maximum Poisson’s ratio are rigid with respect to hydrostatic tension, are easy to shear or to stretch but are unstable with respect to hydrostatic compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sokolnikoff, I.S.: Theory of Elasticity. Krieger, Malabar, FL (1983)

    MATH  Google Scholar 

  2. Almgren, R.F.: An isotropic three dimensional structure with Poisson’s ratio = -1. J. Elasticity 15, 427–430 (1985)

    Article  Google Scholar 

  3. Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  Google Scholar 

  4. W.T.B. Kelvin, Mathematical and Physical Papers: 1841–1890, vol. 3. Cambridge University Press; J. J. Clay and sons, University Press, London, 1890. XLVI, On a gyrostatic adynamic constitution for ‘ether’, pp. 466–472, reprinted from Edinburgh Royal Society, Proc. Vol. xvii., pp. 127–132 March 17 (1890)

  5. Stuart, D.: Polyhedral and mosaic transformations. Student Publications of the School of Design, North Carolina State University 12(1), 2–28 (1963)

  6. Wells, D.: Hidden Connections. Double Meanings. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  7. Frederickson, G.N.: Hinged Dissections. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Wojciechowski, K.W.: Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional systems of hard cyclic hexamers. Mol. Phys. 61, 1247–1258 (1987)

    Article  Google Scholar 

  9. Wojciechowski, K.W.: Two-dimensional isotropic system with a negative Poisson ratio. Phys. Lett. A 137, 60–64 (1989)

    Article  Google Scholar 

  10. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization approach. Int. J. Solids Struct. 31(17), 2313–2329 (1994)

    Article  Google Scholar 

  11. Ishibashi, Y., Iwata, M.: A microscopic model of a negative Poisson’s ratio in some crystals. J. Phys. Soc. Jpn. 69, 2702–2703 (2000)

    Article  Google Scholar 

  12. Grima, J.N., Evans, K.E.: Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19, 1563–1565 (2000)

    Article  Google Scholar 

  13. Grima, J.N., Alderson, A., Evans, K.E.: Auxetic behaviour from rotating rigid units. Phys. Status Solidi B 242, 561–75 (2005)

    Article  Google Scholar 

  14. Grima, J.N., Evans, K.E.: Auxetic behavior from rotating triangles. J. Mater. Sci. 41, 3193–3196 (2006)

    Article  Google Scholar 

  15. Attard, D., Grima, J.N.: Auxetic behaviour from rotating rhombi. Phys. Status Solidi (b) 245, 2395–2404 (2008)

    Article  Google Scholar 

  16. Attard, D., Grima, J.N.: A three-dimensional rotating rigid units network exhibiting negative Poisson’s ratios. Phys. Status Solidi B 249(7), 1330–1338 (2012)

    Article  Google Scholar 

  17. Andrade, C., Ha, C.S., Lakes, R.S.: Extreme Cosserat elastic cube structure with large magnitude of negative Poisson’s ratio. J. Mech. Mater. Struct. (JoMMS) 13(1), 93–101 (2018)

    Article  MathSciNet  Google Scholar 

  18. Milton, G.W.: Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Solids 61, 1543–1560 (2013)

    Article  MathSciNet  Google Scholar 

  19. Milton, G.W., Cherkaev, A.V.: Which elasticity tensors are realizable? ASME J. Eng. Mater. Technol. 117, 483–493 (1995)

    Article  Google Scholar 

  20. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  21. Kapco, V., Treacy, M., Thorpe, M.F., Guest, S.D.: On the collapse of locally isostatic networks. Proc. R. Soc. Lond. A 465, 3517–3530 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Klein, C.A., Cardinale, G.F.: Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 2, 918–923 (1993)

    Article  Google Scholar 

  23. Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Pergamon, Oxford (1997)

    Book  Google Scholar 

  24. Zhu, H.X., Knott, J.F., Mills, N.J.: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J. Mech. Phys. Solids 45, 319–343 (1997)

    Article  Google Scholar 

  25. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir, Moscow (1981)

    MATH  Google Scholar 

  26. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  27. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 1, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  28. Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. (JAM) 82(9), 091002 (2015)

    Article  Google Scholar 

  29. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975)

    Article  Google Scholar 

  30. Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45, 429–431 (1978)

    Article  Google Scholar 

  31. Mindlin, R.D.: Effect of couple stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  32. Lakes, R.S.: Saint-Venant end effects for materials with negative Poisson’s ratios. J. Appl. Mech. 59, 744–746 (1992)

    Article  Google Scholar 

  33. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two dimensional cellular solids. Proc. R. Soc. Lond. A382, 25–42 (1982)

    Google Scholar 

  34. Kolpakov, A.G.: On the determination of the averaged moduli of elastic gridworks. Prikl. Mat. Mekh. 59, 969–977 (1985)

    Google Scholar 

  35. Rueger, Z., Ha, C.S., Lakes, R.S.: Flexible cube tilt lattice with anisotropic Cosserat effects and negative Poisson’s ratio. Physica Status Solidi B 256, 1800512 (2019)

    Article  Google Scholar 

  36. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018)

    Article  Google Scholar 

  37. Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge partial support by the National Science Foundation via Grant No. CMMI -1906890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lakes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakes, R.S. Extremal hinged lattices do not obey the theory of elasticity. Z. Angew. Math. Phys. 73, 27 (2022). https://doi.org/10.1007/s00033-021-01664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01664-x

Keywords

Mathematics Subject Classification

Navigation