Skip to main content
Log in

Stress analysis in an isotropic hyperbolic rotating disk fitted with rigid shaft

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present study of stresses distribution and displacement in an isotropic hyperbolic rotating disk fitted with rigid shaft and having variable density parameter by using transition theory. It has been seen that the convergent disk made of rubber material requires a higher angular speed at the inner surface as compared to aluminum alloy material on the initial yielding stage, but for the fully plastic stage divergent disk requires higher angular speed at the inner surface as compared to a uniform/convergent disk. With the introduction of density parameter, the values of angular speed increase in the inner surface the initial/fully plastic stage. The convergent disk made of rubber material requires maximum radial stress at the inner surface as compared to aluminum alloy material. With the increasing value of density parameter, the radial stress increases in the intermediate surface of the hyperbolic rotating disk. Results have been discussed numerical and depicted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(e_{kk} \) :

First strain invariant

\(T_{ij} ,e_{ij} \) :

Stress and strain tensors

uvw :

Displacement components

E :

Young’s modulus

\(\nu \) :

Poisson’s ratio

c :

Compressibility factor

\(\lambda ,\mu \) :

Lame’s constants

\(\Omega ^{2}\) :

Angular speed

\(\omega \) :

Speed factor

Y:

Yielding stress

km :

Thickness and density parameters

\(\delta _{ij} \) :

Kronecker’s delta

\(h_{i} ,\rho _{0} \) :

Thickness at inner and density at outer surface

r :

Function of x and y

\(\beta \) :

Function of r only

\(\Psi \) :

Transition function

\(\rho \) :

Density

d :

Constant

\(A_{1} ,A_{2} \) :

Constants of integration

References

  1. Sokolnikoff, I.S.: Mathematical theory of elasticity, 2nd edn. McGraw - Hill Book Co., New York (1956)

    MATH  Google Scholar 

  2. Swainger K.H.: Analysis of deformation. Chapman & Hall London. Macmillan, USA,V.III,fluidity,67-68,83(1956)

  3. Seth, B.R.: Transition theory of elastic—plastic deformation, creep and relaxation. Nature 195, 896–897 (1962)

    Article  Google Scholar 

  4. Seth, B.R.: Measure concept in mechanics. Int. J. Non-linear Mech. 1(1), 35–40 (1966)

    Article  Google Scholar 

  5. Timoshenko, S., Goodier, J.N.: Theory of elasticity. McGraw-Hill Book Company, New York (1970)

    MATH  Google Scholar 

  6. Reddy, T.Y., Srinath, H.: Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density. Int. J. Mech. Sci. 16(1), 85–89 (1974)

    Article  Google Scholar 

  7. Güven, U.: Elastic-plastic stress distribution in a rotating hyperbolic disk with rigid inclusion. Int. J. Mech. Sci. 40(1), 97–109 (1998)

    Article  Google Scholar 

  8. Chakrabart, J.: Theory of Plasticity. McGraw-Hill Book Company, New York (1998)

    Google Scholar 

  9. Apatay, T., Eraslan, A.N.: Elastic deformation of rotating parabolic discs: analytical solutions. J. Faculty Eng. Archit. Gazi Univ. 18, 115–135 (2003)

    Google Scholar 

  10. Eraslan, A.N.: Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion. Eur. J. Mech. Solids 22(6), 861–874 (2003)

  11. Thakur,P.: Some problems in elastic, plastic and creep transition. Ph.D. Thesis, 13- 27(2006)

  12. Vivio, F., Vullo, V.: Elastic stress analysis of rotating converging conical disks subjected to thermal load and having variable density along the radius. Int. J. Solids Struct. 44(24), 7767–7784 (2007)

    Article  Google Scholar 

  13. Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S.: Analysis of functionally graded rotating disks with variable thickness. Mech. Res. Commun. 35(4), 283–309 (2008)

    Article  Google Scholar 

  14. Nie, G.J., Batra, R.C.: Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness. Compos. Struct. 92(2), 720–729 (2010)

    Article  Google Scholar 

  15. Calderale, P.M., Vivio, F., Vullo, V.: Thermal stresses of rotating hyperbolic disks as particular case of non-linearly variable thickness disks. J. Thermal Stress. 35(7), 877–891 (2012)

    Article  Google Scholar 

  16. Peng, X.L., Li, X.F.: Effects of gradient on stress distribution in rotating functionally graded solid disks. J. Mech. Sci. Technol. 26(4), 1483–1492 (2012)

    Article  Google Scholar 

  17. Vivio, F., Vullo, V., Cifani, P.: Theoretical stress analysis of rotating hyperbolic disk without singularities subjected to thermal load. J. Thermal Stress. 37(1), 117–136 (2014)

    Article  Google Scholar 

  18. Deepak, D., Garg, M., Gupta, V.K.: Creep behavior of rotating FGM disc with linear and hyperbolic thickness profiles. Kragujevac J. Sci. 37, 35–48 (2015)

    Google Scholar 

  19. Yıldırım, V.: Analytic solutions to power-law graded hyperbolic rotating discs subjected to different boundary conditions. Int. J. Eng. Appl. Sci. 8(1), 38–52 (2016)

    Google Scholar 

  20. Yıldırım, V.: A parametric study on the centrifugal force-induced stress and displacements in power-law graded hyperbolic discs. Latin Am. J. Solids Struct. 15(3), 1–16 (2018)

    Google Scholar 

  21. Jalali, M. H., Shahriari, B.: Elastic stress analysis of rotating functionally graded annular disk of variable thickness using finite difference method. Math. Probl. Eng. 2018,1–11. https://doi.org/10.1155/2018/1871674(2018)

  22. Yıldırım, V.: Closed-form formulas for hyperbolically tapered rotating disks made of traditional materials under combined thermal and mechanical loads. Int. J Eng. Appl. Sci. (IJEAS). 10(1), 73–92 (2018)

    Google Scholar 

  23. Salehian,M. , Shahriari,B. , Yousefi M.:Investigating the effect of angular acceleration of the rotating disk having variable thickness and density function on shear stress and tangential displacement.Journal of the Brazilian Society of Mechanical Sciences and Engineering.41(31),2-11(2019)

  24. Singh, R., Saxena, R., Khanna, K., Gupta, V.: Creep response of rotating composite discs having exponential hyperbolic linear and constant thickness profiles. Defence Sci. J. 70(2), 292–298 (2020)

    Article  Google Scholar 

  25. Sethi, M., Thakur, P.: Elasto-plastic deformation in isotropic material disk with shaft subjected to load and variable density. J. Rubber Res. 23(1), 69–78 (2020)

    Article  Google Scholar 

  26. Thakur, P, Kumar, N., Sukhvinder.:Elasto-plastic density variation in a deformable disk. Struct. Integr. Life.20(1),27–32(2020)

  27. Thakur, P., Sethi, M., Gupta, N., Gupta, K.: Effect of density parameter in a disk made of orthotropic material and rubber. J. Rubber Res. 25(2), 193–201 (2020)

    Article  Google Scholar 

  28. Thakur, P., Sethi, M.: Elasto-plastic deformation in an orthotropic spherical shell subjected to temperature gradient. Math. Mech. Solids. 25(1), 26–34 (2020)

    Article  MathSciNet  Google Scholar 

  29. Thakur, P., Sethi, M.: Creep deformation and stress analysis in a transversely material disc subjected to rigid shaft. Math. Mech. Solids. 25(1), 17–25 (2020)

    Article  MathSciNet  Google Scholar 

  30. Lin, W.F.: Elastic analysis for rotating functionally graded annular disk with exponentially-varying profile and properties. Math. Probl. Eng. https://doi.org/10.1155/2020/2165804(2020)

  31. Thakur, P., Sethi, M., Gupta, N., Gupta, K.:Thermal effects in rectangular plate made of rubber, copper and glass materials. J. Rubber Res. https://doi.org/10.1007/S42464-020-00080-6 (2021)

  32. Thakur, P., Kumar, N., Sethi, M.: Elastic-plastic stresses in a rotating disc of transversely isotropic material fitted with a shaft and subjected to thermal gradient. Meccanica. 56, 1165–1175 (2021)

    Article  MathSciNet  Google Scholar 

  33. Thakur, P., Sethi, M., Kumar, N., Gupta, N., Kumar, A., Sood, S.:Thermal effects in a rotating disk made of rubber and magnesium materials and having variable density. J. Rubber Res. DOI: 10.1007/s42464-021-00107-6(2021)

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with any organization or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Sethi, M., Kumar, N. et al. Stress analysis in an isotropic hyperbolic rotating disk fitted with rigid shaft. Z. Angew. Math. Phys. 73, 23 (2022). https://doi.org/10.1007/s00033-021-01663-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01663-y

Keywords

Mathematics Subject Classification

Navigation