Skip to main content
Log in

Energy decay for a porous-elastic system with nonlinear localized damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we are considering the one-dimensional porous-elastic system with nonlinear localized damping acting in a arbitrary small region of the interval under consideration. Assuming appropriate assumptions on the nonlinear terms, we establish the energy decay of the corresponding system. To do this, we used the observability inequality obtained for the conservative system combined with a unique continuation property recently introduced in Ma et al. (Attractors for locally damped Bresse systems and a unique continuation property, 2021. arXiv:2102.12025) and the reduction principle (see Daloutli et al. in Discrete Contin Dyn Syst 2(1):67–94, 2009) where the problem of decay rates with nonlinear damping is reduced to an appropriate stabilizability inequality for the linear equation. This study generalizes and improves previous literature outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Ho, L.F.: Exact controllability of the one dimensional wave equation with locally distributed control. SIAM J. Control Optim. 28(3), 733–748 (1990)

    Article  MathSciNet  Google Scholar 

  3. Chen, G., Fulling, S.A., Narcowich, F.J., Sun, S.: Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51(1), 266–301 (1991)

    Article  MathSciNet  Google Scholar 

  4. Martinez, P.: Decay of solutions of the wave equation with a local highly degenerate dissipation. Asymptot. Anal. 19(1), 1–17 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15(2), 205–235 (1990)

    Article  MathSciNet  Google Scholar 

  6. Zuazua, E.: Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 70(4), 513–529 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  Google Scholar 

  8. Santos, M.L., Almeida Júnior, D.S., Rodrigues, J.H., Falcão Nascimento, F.A.: Decay rates for Timoshenko system with nonlinear arbitrary localized damping. Differ. Integral Equ. 27, 1-2-1–26 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Falcão Nascimento, F.A., Lasiecka, I., Rodrigues, J.H.: Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Z. Angew. Math. Phys. 65(6), 1189–1206 (2013)

    Article  MathSciNet  Google Scholar 

  10. Daloutli, M., Lasiecka, I., Toundykov, D.: Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete Contin. Dyn. Syst. 2(1), 67–94 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Ma, T.F, Monteiro, R.M., Seminario-Huertas, P.N.: Attractors for locally damped Bresse systems and a unique continuation property. arXiv:2102.12025 (2021)

  12. Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16, 487–491 (2003)

    Article  MathSciNet  Google Scholar 

  13. Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43, 3414–3427 (2006)

    Article  MathSciNet  Google Scholar 

  14. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman and Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  15. Muñoz Rivera, J.E., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 338, 1296–1309 (2008)

    Article  MathSciNet  Google Scholar 

  16. Prüss, J.: On the spectrum of C$_0$-semigroups. Trans. AMS 28, 847–857 (1984)

    MATH  Google Scholar 

  17. Santos, M.L., Campelo, A.D.S., AlmeidaJúnior, D.S.: On the decay rates of porous elastic systems. J. Elast. 127, 79–101 (2017)

    Article  MathSciNet  Google Scholar 

  18. Santos, M.L., Almeida Júnior, D.S.: On porous-elastic system with localized damping. Z. Angew. Math. Phys. 67, 63 (2016). https://doi.org/10.1007/s00033-016-0622-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl. Anal. 87, 451–464 (2008)

    Article  MathSciNet  Google Scholar 

  20. Soufyane, A., Afilal, M., Chacha, M.: General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal. 72, 3903–3910 (2010)

    Article  MathSciNet  Google Scholar 

  21. Soufyane, A., Afilal, M., Chacha, M.: Boundary stabilization of memory type for the porous-thermo-elasticity system. Abstr. Appl. Anal. 2009, article number: 280790 (2009)

  22. Xavier Pamplona, P., Muñoz Rivera, J.E., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 379, 682–705 (2011)

    Article  MathSciNet  Google Scholar 

  23. Freitas, M.M., Santos, M.L., Langa, J.A.: Porous elastic system with nonlinear damping and sources terms. J. Differ. Equ. 264(4), 2970–3051 (2018)

    Article  MathSciNet  Google Scholar 

  24. Raposo, C.A., Apalara, T.A., Ribeiro, J.O.: Analyticity to transmission problem with delay in porous-elasticity. J. Math. Anal. Appl. 466, 819–834 (2018). https://doi.org/10.1016/j.jmaa.2018.06.017

    Article  MathSciNet  MATH  Google Scholar 

  25. Barbu, V.: Analysis and Control of Nonlinear Infinite-Dimensional Systems. Academic Press Inc, Boston (1993)

    MATH  Google Scholar 

  26. Brézis, H.: Operateurs Maximaux Monotones et Semigroups de Contractions dans les Spaces de Hilbert. North Holland Publishing Co., Amsterdam (1973)

    MATH  Google Scholar 

  27. Pazy, A.: semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

Download references

Acknowledgements

The first author has been partially supported by the CNPq Grant 303026/2018-9. The authors thank for the referee for your careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.L., Almeida Júnior, D.S. & Cordeiro, S.M.S. Energy decay for a porous-elastic system with nonlinear localized damping. Z. Angew. Math. Phys. 73, 7 (2022). https://doi.org/10.1007/s00033-021-01636-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01636-1

Keywords

Mathematics Subject Classification

Navigation