Skip to main content

Rigorous justification of the effective boundary condition on a porous wall via homogenization

Abstract

Viscous flow through a reservoir with porous boundary is studied via asymptotic analysis and homogenization. Under the assumption of periodicity of the pores, the effective boundary condition is derived and rigorously justified. The velocity on the boundary satisfies a version of the Darcy law. The Darcy law for tangential component can also be seen as the Beavers–Joseph law.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  2. Beliaev, A.Y., Chechkin, G.A.: Averaging operators with boundary conditions of fine-scaled structure. Math. Notes 65(4): 418–429 (1999) (Translated from Math. Zametki 65(4), 496–510 (1999)

  3. Belyaev, A.G., Chechkin, G.A., Gadyl’shin, R.R.: Effective membrane permeability: estimates and low concentration asymptotics. SIAM J. Appl. Math. 60(1), 84–108 (2000)

    Article  MathSciNet  Google Scholar 

  4. Borisov, D.I.: On a model boundary value problem for Laplacian with frequently alternating type of boundary condition. Asympt. Anal. 35(1), 1–26 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bourgeat, A., Gipouloux, O., Marušić-Paloka, E.: Ecoulement non newtonien a travers un filtre mince. C. R. Acad. Sci. Paris Série I(324), 945–950 (1997)

    Article  Google Scholar 

  6. Bourgeat, A., Gipouloux, O., Marušić-Paloka, E.: Mathematical modelling and numerical simulation of a non-Newtonian viscous flow through a thin filter. SIAM J. Appl. Math. 62(2), 597–626 (2002)

    Article  MathSciNet  Google Scholar 

  7. Carraro, T., Marušić-Paloka, E., Mikelić, A.: Effective pressure boundary condition for the filtration through porous medium via homogenization. Nonlinear Anal. Real World Appl. 44, 149–172 (2018)

    Article  MathSciNet  Google Scholar 

  8. Carraro, T., Goll, C., Marciniak-Czochra, A., Mikelić, A.: Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Methods Appl. Mech. Eng. 292, 195–220 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chechkin, G.A.: Averaging of boundary value problems with a singular perturbation of the boundary condition. Mat. Sb. 184(6), 99–150 (1993)

    MATH  Google Scholar 

  10. Conca, C.: Viscous fluid flow through a sieve 1. Limit behavior near the sieve. J. Math. Pure. Appl. 66(1), 1–43 (1987)

  11. Conca, C.: Viscous fluid flow through a sieve 2. Limit behavior distant from the sieve. J. Math. Pure. Appl. 66(1), 45–70 (1987)

  12. Damlamian, A., Ta-Tsien, L.: Boundary homogenization for elliptic problems. J. Math. Pures Appl. 66(4), 351–361 (1987)

    MathSciNet  MATH  Google Scholar 

  13. D’Angelo, C., Panasenko, G., Quarteroni, A.: Asymptotic-numerical derivation of the Robin type coupling conditions for the macroscopic pressure at a reservoir-capillaries interface. Appl. Anal. 91(1), 158–171 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ehrhardt, M.: An introduction to fluid-porous interface coupling. Preprint BUW-AMNA-OPAP 10/15, University of Wuppertal (2010)

  15. Ene, H.I., Sanchez-Palencia, E.: Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. J. Mécan. 14, 73–108 (1975)

    MATH  Google Scholar 

  16. Friedman, A., Cheng, H.C., Min, Y.J.: Effective permeability of the boundary of a domain. Commun. Part. Differ. Equ. 20(1–2), 59–102 (1995)

    Article  MathSciNet  Google Scholar 

  17. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York (2011)

    Book  Google Scholar 

  18. Gadyl’shin, R.R., Chechkin, G.A.: A boundary value problem for the laplacian with rapidly changing type of boundary conditions in a multidimensional domain. Siber. Math. J. 40(2): 229–244 (1999) (Translated from Sibirskii Matematicheskii Zhurnal, 40, 2 (1999), 271–287)

  19. Gadyl’shin, R.R., Chechkin, G.A.: On Boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries. Acta Mathematica Sinica 23, 237–248 (2007)

    Article  MathSciNet  Google Scholar 

  20. Jäger, W., Mikelić, A.: On the roughness induced effective boundary conditions for an Incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  MathSciNet  Google Scholar 

  21. Jäger, W., Mikelić, A.: On the boundary condition on the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(23), 403–465 (1996)

  22. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  Google Scholar 

  23. Lobo, M., Pérez, M.E.: Asymptotic behavior of an elastic body with a surface having small stuck regions. Math. Modell. Numer. Anal. 22(4), 609–624 (1988)

    Article  Google Scholar 

  24. Lobo, M., Oleinik, O.A., Pérez, M.E., Shaposhnikova, T.A.: On homogenization of solutions of boundary value problems in domains, perforated along manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser. V 25(3–4), 611–629 (1997)

  25. Marušić-Paloka, E.: Effective fluid behavior in domain with rough boundary and the Darcy-Weisbach law. SIAM J. Appl. Math. 79(4), 1244–1270 (2019)

    Article  MathSciNet  Google Scholar 

  26. Marušić-Paloka, E.: Dirichlet vs Neumann (submitted) (2020)

  27. Marušić-Paloka, E.: Application of very weak formulation on homogenization of boundary value problems in porous media. Czechoslovak Math. J. (2021) (to appear)

  28. Marušić-Paloka, E.: Rigorous derivation of the Darcy boundary condition on the porous wall (2020) (Submitted)

  29. Marušić-Paloka, E., Pažanin, I.: The effective boundary condition on a porous wall (2020) (Submitted)

  30. Marušić-Paloka, E., Starčević, M.: High-order approximations for an incompressible viscous flow on a rough boundary. Appl. Anal. 95(7), 1305–1333 (2015)

    Article  MathSciNet  Google Scholar 

  31. Oleinik, O.A., Chechkin, G.A.: On asymptotics of solutions and eigenvalues of the boundary value problems with rapidly alternating boundary conditions for the system of elasticity. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat., IX. Ser. Rend. Lincei Mat. Appl. V. 7(1), 5–15 (1996)

  32. Pažanin, I., Radulović, M.: On the heat flow through a porous tube filled with incompressible viscous fluid. Z. Naturforsch. A 75(4), 333–342 (2020)

    Article  Google Scholar 

  33. Safmann, P.G.: Boundary condition at surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  Google Scholar 

  34. Tio, K.-K., Sadhal, S.S.: Boundary conditions for Stokes flows near a porous membrane. Appl. Sci. Res. 52, 1–20 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The first author has been supported by the Croatia Science Foundation under the project AsAn (IP-2018-01-2735). The second author has been supported by the Croatia Science Foundation under the project MultiFM (IP-2019-04-1140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Marušić-Paloka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The boundary layer problem

Appendix A: The boundary layer problem

To start with, we consider the general problem

$$\begin{aligned}&-\mu \,\Delta _y \mathbf{B}+\nabla _y b =\mathbf{F}\,\,\,\text{ in }\,\,\, {\mathcal {G}}\,, \end{aligned}$$
(109)
$$\begin{aligned}&\text{ div}_y\, \mathbf{B}=G\,\,\,\text{ in }\,\,\, {\mathcal {G}}\,, \end{aligned}$$
(110)
$$\begin{aligned}&{\mathbf {T}} (\mathbf{B}, b){\mathbf {e}}_2={\mathbf {d}} \,\,\,\text{ on }\,\,\,\gamma ^N\,, \end{aligned}$$
(111)
$$\begin{aligned}&\mathbf{B} ={\mathbf {0}}\,\,\,\text{ on }\,\,\gamma ^D \end{aligned}$$
(112)
$$\begin{aligned}&({\mathbf {B}} , b ) \;\;\text{ is }~ 1\text{-periodic } \text{ in }\;y_1\;,\;\;\nabla _y \mathbf{B} \in L^2 ({\mathcal {G}})\,\,\;\; . \end{aligned}$$
(113)

By its weak solution, we mean \(({\mathbf {B}}, b) \in {\mathcal {D}}({\mathcal {G}}) \times L^2_{loc} ({\mathcal {G}}) \) such that

$$\begin{aligned} \text{ div}_y\, \mathbf{B}=G \end{aligned}$$

in the sense of distributions, and

$$\begin{aligned} \mu \int \limits _{{\mathcal {G}}} \nabla _y {\mathbf {B}}\;:\;\nabla _y {\mathbf {z}} = \int \limits _{{\mathcal {G}}}{\mathbf {F}}\,\cdot \,{\mathbf {z}} + \int \limits _{\gamma ^N} {\mathbf {z}}\cdot {\mathbf {d}}\;\;,\;\;\forall \;{\mathbf {z}} \in {{\mathcal {D}}}_0 ({\mathcal {G}}), \end{aligned}$$
(114)

where

$$\begin{aligned} {{\mathcal {D}}}({{\mathcal {G}}}) = \lbrace {\mathbf {V}}\in H^1_{loc}({\mathcal {G}})\;,\;{\mathbf {V}}={\mathbf {0}}\;\text{ on }\;\gamma ^D\;\;,\;\;\nabla _y {\mathbf {V}} \in L^2 ({\mathcal {G}})\rbrace . \end{aligned}$$

and

$$\begin{aligned} {{\mathcal {D}}}_0({{\mathcal {G}}}) = \lbrace {\mathbf {V}}\in H^1 ({{\mathcal {G}}})\;,\;{\mathbf {V}}={\mathbf {0}}\;\text{ on }\;\gamma ^D\;\;,\;\;\text{ div}_y{\mathbf {V}} =0 \rbrace . \end{aligned}$$

The pressure is then picked to satisfy

$$\begin{aligned} \nabla _y b = \mu \,\Delta _y \mathbf{B} + {\mathbf {F}} \end{aligned}$$

in the sense of distributions.

We prove the following result providing the existence and asymptotic behavior of the solution:

Theorem 3

Let \({\mathbf {d}} \in {\mathbb {R}}^2\) and let \({\mathbf {F}}\in L^2 ({\mathcal {G}})^2,\;G\in L^2 ({\mathcal {G}}) \) be such that \(e^{\alpha y_2} {\mathbf {F}}\in L^2 ({\mathcal {G}})^2 \;,\; e^{\alpha y_2} G \in L^2 ({\mathcal {G}})^2\), for some \(\alpha >0\) and that for (a.e.) \(s>0 \)

$$\begin{aligned} \langle {\mathbf {F}}\rangle = \int \limits _{\gamma (s)} {\mathbf {F}} (y_1 , s) \,\mathrm{d}y_1 =0\;\;,\;\langle G\rangle = \int \limits _{\gamma (s)} G (y_1 , s) \,\mathrm{d}y_1 =0\;\;, \end{aligned}$$

where \(\gamma (s)={\mathcal {G}} \cap \{ y_2=s \}\). Then

  1. 1.

    There exists a weak solution \(({\mathbf {B}} , b) \in {\mathcal {D}}({\mathcal {G}}) \times L^2_{loc} ({ {\mathcal {G}}}) \) to the problem (109)–(113). Furthermore, \({\mathbf {B}}\) is unique while b is determined up to an additive constant.

  2. 2.

    There exist constants \({\mathbf {B}}^\infty \in {\mathbb {R}}^2 \) and \(b^\infty \in {\mathbb {R}}\) such that \(e^{\tau y_2} ({\mathbf {B}} -{\mathbf {B}}^\infty ) \in H^1 ({\mathcal {G}})^2\), \(e^{\tau y_2} (b -b^\infty ) \in L^2 ({\mathcal {G}})\) for some \(\tau >0\).

  3. 3.

    The pressure b is determined up to a constant. Thus, we can choose \(b^\infty =0\) . Then

    $$\begin{aligned} \langle b\rangle= & {} \int \limits _{\gamma (s)} b (y_1 , s) \,\mathrm{d}y_1 =0\;\;,\;\;\forall \;s>0\,, \end{aligned}$$
    (115)
    $$\begin{aligned} \langle B_1 \rangle= & {} \int \limits _{\gamma (s)} B_1 (y_1 , s) \,\mathrm{d}y_1 =B_1^\infty \;\;,\;\;\forall \;s>0\;, \end{aligned}$$
    (116)
    $$\begin{aligned} \langle B_2\rangle= & {} \int \limits _{\gamma (s)} B_2 (y_1 , s) \,\mathrm{d}y_1\equiv B_2^\infty =const.\;\;,\;\;\forall \;s>0\;\;. \end{aligned}$$
    (117)
  4. 4.

    If \(G=0\) and \({\mathbf {F}}=0\) and \(B^\infty _k\in {\mathbb {R}}\) are the constants from (117), \(k=1,2\), then

    $$\begin{aligned} \mu \int \limits _{{\mathcal {G}}} \left| \nabla _y {\mathbf {B}} \right| ^2 = \int \limits _{\gamma ^N} {\mathbf {B}}\,\cdot \,{\mathbf {d}} ={\mathbf {B}}^\infty \cdot {\mathbf {d}} \;\;, \end{aligned}$$
    (118)

    so that

    $$\begin{aligned} {\mathbf {B}}^\infty \cdot {\mathbf {d}} >0\;\;, \end{aligned}$$

    where \({\mathbf {B}}^\infty = (B_1^\infty , B_2^\infty )\).

  5. 5.

    If \(G=0\) and \({\mathbf {F}}=0\), then the linear operator \({\mathbf {L}}:{\mathbf {R}}^2 \rightarrow {\mathbf {R}}^2\), defined by \({\mathbf {L}}\, {\mathbf {d}}={\mathbf {B}}^\infty \), is symmetric and strictly positive (thus, it is invertible). Furthermore, its matrix in a canonic basis is diagonal.

  6. 6.

    Two problems (24)–(29) have unique solutions \(({\mathbf {w}}^k , \pi ^k ,\tau _k) \in {\mathcal {D}}({\mathcal {G}}) \times L^2 ({\mathcal {G}}) \times {\mathbf {R}} \).

Proof

For the proof of the existence of the solution and its exponential decay, the reader should consult [20] or [30] (see also [21] or [25]) , with slight modification due to the boundary condition.

Let us confirm that the pressure is determined only up to a constant. It is not clear, on the first glance, since the boundary condition (109) involves the pressure. First of all, the pressure boundary condition should be understood only in the sense of the variational formulation (114). Secondly, since it is not a kinematic but a dynamic boundary condition, it is a kind of Neumann condition for the Navier-Stokes. Indeed, replacing b by \(b +C\) in (114) produces an additional term \(C\int \limits _{\gamma } z_2 \), with \(\gamma = \gamma ^N\cup \gamma ^D\), but (due to the incompressibility)

$$\begin{aligned} \int \limits _{\gamma } z_2 =0\;\;. \end{aligned}$$

To finish the proof of the assertion 3. and prove the assertion 4., we take the partial mean \(\langle \;f\;\rangle = \int \limits _{-1/2}^{1/2} f(y_1 , y_2) \mathrm{d}y_1 \) of (109) and (110). It gives

$$\begin{aligned} -\mu \frac{\mathrm{d}^2}{\mathrm{d}y_2^2} \langle B_1 \rangle= & {} 0\;\;\Rightarrow \;\;\langle B_1\rangle =\text{ const. }\;, \end{aligned}$$
(119)
$$\begin{aligned} -\mu \frac{\mathrm{d}^2}{\mathrm{d}y_2^2} \langle B_2 \rangle + \frac{\mathrm{d}}{\mathrm{d}y_2}\langle b \rangle= & {} 0\;\;\Rightarrow \;\;-\mu \frac{\mathrm{d}}{\mathrm{d}y_2} \langle B_2 \rangle + \langle b \rangle =\text{ const. }\,, \end{aligned}$$
(120)
$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}y_2}\langle B_2\rangle= & {} 0\;\;\Rightarrow \;\;\langle B_2 \rangle =\text{ const. } \end{aligned}$$
(121)

Thus,

$$\begin{aligned} \langle b \rangle =\text{ const. } \equiv b^\infty \;\; \end{aligned}$$
(122)

and

$$\begin{aligned} \langle {\mathbf {B}} \rangle =\text{ const. } \equiv {\mathbf {B}}^\infty \;. \end{aligned}$$
(123)

As the pressure is determined up to a constant, we can take \(b^\infty =0\). Using \({\mathbf {B}}\) as the test-function in (24) leads to

$$\begin{aligned} \mu \int \limits _{{\mathcal {G}}}\left| \nabla _y{\mathbf {B}}\right| ^2 -\int \limits _{{\mathcal {G}}}b\,\cdot \,G - \int \limits _{{\mathcal {G}}} {\mathbf {F}}\cdot {\mathbf {B}} +b^\infty \cdot B_2^\infty ={\mathbf {B}}^\infty \cdot {\mathbf {d}}\;\;. \end{aligned}$$
(124)

In particular, for \(G=0\), \({\mathbf {F}}=0\) and \(b^\infty =0\) it gives (118).

To prove the last assertion, first we easily verify that the operator is linear, due to the linearity of the Stokes system. Then, for any \({\mathbf {d}}\in {\mathbf {R}}^2\),

$$\begin{aligned} {\mathbf {d}}\cdot {\mathbf {L}}\,{\mathbf {d}} = {\mathbf {d}}\cdot {\mathbf {B}}^\infty >0\;. \end{aligned}$$

Strict positivity implies invertibility. Then we simply take \({\mathbf {d}}_k = {\mathbf {L}}^{-1} {\mathbf {e}}_k \). We still need to prove that \({\mathbf {d}}_k = \tau _k {\mathbf {e}}_k\). In other words, the matrix representation in canonic basis is diagonal. Let \({\mathbf {d}}_k = (d^1_k , d^2_k) \) , k=1,2. We look at the problem

$$\begin{aligned}&-\mu \,\Delta _y \mathbf{B}^k+\nabla _y b^k =\mathbf{0}\,\,\,\text{ in }\,\,\, {{\mathcal {G}}}\,, \end{aligned}$$
(125)
$$\begin{aligned}&\text{ div}_y\, \mathbf{B}^k=0\,\,\,\text{ in }\,\,\, {{\mathcal {G}}}\,, \end{aligned}$$
(126)
$$\begin{aligned}&{\mathbf {T}} (\mathbf{B}^k, b^k){\mathbf {e}}_2={\mathbf {d}}_k \,\,\,\text{ on }\,\,\,\gamma ^N\,, \end{aligned}$$
(127)
$$\begin{aligned}&\mathbf{B}^k ={\mathbf {0}}\,\,\,\text{ on }\,\,\gamma ^D\,, \end{aligned}$$
(128)
$$\begin{aligned}&({\mathbf {B}}^k , b^k ) \;\;\text{ is } \text{1-periodic } \text{ in }\;y_1\;,\;\;\nabla _y \mathbf{B}^k \in L^2 ({{\mathcal {G}}})\,. \end{aligned}$$
(129)

By definition of \({\mathbf {d}}_k\)

$$\begin{aligned} \lim _{y_2\rightarrow +\infty } {\mathbf {B}}^k={\mathbf {e}}_k \; \end{aligned}$$
(130)

and, thus,

$$\begin{aligned} \langle {\mathbf {B}}^k \rangle (y_2) = \int \limits _{-1/2}^{1/2} {\mathbf {B}}^k (y_1 , y_2 ) \mathrm{d}y_1 = {\mathbf {e}}_k\;\;. \end{aligned}$$

We test the equation for \({\mathbf {B}}^1\) by \({\mathbf {B}}^2\) to get

$$\begin{aligned} \mu \int \limits _{{\mathcal {G}}} \nabla {\mathbf {B}}^1 \,\nabla {\mathbf {B}}^2 ={\mathbf {d}}_1\cdot \int \limits _{{\mathcal {G}}} {\mathbf {B}}^2 = {\mathbf {d}}_1\cdot {\mathbf {e}}_2\;\;. \end{aligned}$$

Testing the equation for \({\mathbf {B}}^2\) by \({\mathbf {B}}^1\) to get

$$\begin{aligned} \mu \int \limits _{{\mathcal {G}}} \nabla {\mathbf {B}}^2\, \nabla {\mathbf {B}}^1 ={\mathbf {d}}_2\cdot \int \limits _{{\mathcal {G}}} {\mathbf {B}}^1 = {\mathbf {d}}_2\cdot {\mathbf {e}}_1\;\;, \end{aligned}$$

proving that

$$\begin{aligned} d_2^1 = d_1^2 \;\;. \end{aligned}$$

At this point, we recall that, by definition, the domain is symmetric in the sense that \((y_1 , 0) \in \gamma ^N\;\Leftrightarrow \; (-y_1 , 0) \in \gamma ^N\), since \(\gamma ^N =\langle -a , a \rangle \times \lbrace 0 \rbrace \). Then, it is easy to verify by direct computation that the functions

$$\begin{aligned} {\mathbf {W}}^1 (y_1 ,y_2)=B_1^1 (-y_1 , y_2) {\mathbf {e}}_1 -B_1^2 (-y_1 , y_2) {\mathbf {e}}_2 \;\;,\;\;\Pi ^1 (y_1 , y_2) = -b^1 (-y_1 , y_2) \end{aligned}$$

satisfy the Stokes system

$$\begin{aligned} -\mu \Delta {\mathbf {W}}^1 + \nabla \Pi ^1 ={\mathbf {0}}\;\;,\;\;\text{ div }\,{\mathbf {W}}^1=0\;\;\text{ in }\;\;{\mathcal {G}} \;\;. \end{aligned}$$

Also \({\mathbf {W}}^1={\mathbf {0}}\) on \(\gamma ^D\) and

$$\begin{aligned} \lim _{y_2\rightarrow +\infty }{\mathbf {W}}^1 = {\mathbf {e}}_1 \;\;. \end{aligned}$$

Finally on \(\gamma ^N\), we have:

$$\begin{aligned} -\mu \left( \frac{\partial W^1_1}{\partial y_2} + \frac{\partial W^1_2}{\partial y_1}\right) (y_1 ,0 )= & {} -\mu \left( \frac{\partial B^1_1}{\partial y_2} + \frac{\partial B^1_2}{\partial y_1}\right) (-y_1 ,0)=d^1_1\,,\\ -2\mu \frac{\partial W^1_2}{\partial y_2} (y_1 ,0) + \Pi ^1 (y_1 ,0)= & {} 2\mu \frac{\partial B^1_2}{\partial y_2} (-y_1 ,0)- b^1 (y_1 ,0) = -d^1_2\;\;. \end{aligned}$$

We know that the problem: find \(({\mathbf {B}}^k , b^k,{\mathbf {d}}^k) \) such that (125)–(130), has a unique solution. Thus, \({\mathbf {W}}^1 ={\mathbf {B}}^1\) and \({\mathbf {d}}_1 = (d^1_1 , d^2_1) = (d^1_1 , - d^2_1)\). Thus, \(d^2_1=0\). Since \(d_2^1=d_1^2 \), they are both equal zero and the matrix \({\mathbf {L}}\) is diagonal

$$\begin{aligned} {\mathbf {L}} = \left[ \begin{array}{rr} \tau _1&{}0\\ 0&{}\tau _2 \end{array} \right] \;\;, \end{aligned}$$

or, equivalently

$$\begin{aligned} {\mathbf {d}}_k = \tau _k {\mathbf {e}}_k \;\;. \end{aligned}$$

\(\square \)

For the boundary layer problems (24)–(28) and (35)–(40), we prove some more specific results:

Lemma 1

$$\begin{aligned}&\int \limits _{-1/2}^{1/2} {\mathbf {w}}^k ({\mathbf {y}}) \mathrm{d}y_1 ={\mathbf {e}}_k\;\;,\;\forall y_2\ge 0\,, \end{aligned}$$
(131)
$$\begin{aligned}&\int \limits _{-1/2}^{1/2}\pi ^k ({\mathbf {y}}) \mathrm{d}y_1 =0\;\;,\;\forall y_2\ge 0\,, \end{aligned}$$
(132)
$$\begin{aligned}&\tau _k= \mu \int \limits _{{\mathcal {G}}} \left| \nabla {\mathbf {w}}^k\right| ^2>0\;\;,\;k=1,2\;. \end{aligned}$$
(133)

Proof

From Theorem 3, we know that

$$\begin{aligned} \int \limits _{-1/2}^{1/2} {\mathbf {w}}^k ({\mathbf {y}}) \mathrm{d}y_1 =\text{ const. }\;\;. \end{aligned}$$

Since

$$\begin{aligned} \lim _{y_2\rightarrow \infty } {\mathbf {w}}^k ={\mathbf {e}}_k, \end{aligned}$$

we get the first claim (131). Thus, taking into account (29) and, again, Theorem 3 gives

$$\begin{aligned} \int \limits _{-1/2}^{1/2} \pi ^k ({\mathbf {y}}) \mathrm{d}y_1 =0\;\;\;,\;k=1,2\;. \end{aligned}$$

The last claim (118) from Theorem 3 implies

$$\begin{aligned} \mu \int \limits _{{\mathcal {G}}} \left| \nabla {\mathbf {w}}^k\right| ^2 = \tau _k \int \limits _{\gamma ^N} w_k^k = \tau _k\;\;\;. \end{aligned}$$

Thus, \(\tau _k>0\). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marušić-Paloka, E., Pažanin, I. Rigorous justification of the effective boundary condition on a porous wall via homogenization. Z. Angew. Math. Phys. 72, 146 (2021). https://doi.org/10.1007/s00033-021-01571-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01571-1

Keywords

  • Porous boundary
  • Viscous fluid
  • Homogenization
  • Darcy-type boundary condition
  • Boundary layers

Mathematics Subject Classification

  • 35B27
  • 76S99
  • 76M50