Skip to main content
Log in

The existence and decay of solitary waves for the Fornberg–Whitham equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the Fornberg–Whitham equation and a family of solitary wave solutions is found by using minimization principle, where a related penalization function and the concentration-compactness lemma play a key role in the proof. Besides, we also prove that the family of solitary solutions is orbitally stable and decays exponentially when wave speed c is bigger than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289, 373–404 (1978)

    Article  MathSciNet  Google Scholar 

  2. Zhou, J., Tian, L.: A type of bounded traveling wave solutions for the Fornberg–Whitham equation. J. Math. Anal. Appl. 346, 255–261 (2008)

    Article  MathSciNet  Google Scholar 

  3. Yin, J., Tian, L., Fan, X.: Classification of travelling waves in the Fornberg–Whitham equation. J. Math. Anal. Appl. 368, 133–143 (2010)

    Article  MathSciNet  Google Scholar 

  4. Wu, X., Zhang, Z.: On the blow-up of solutions for the Fornberg–Whitham equation. Nonlinear Anal. Real World Appl. 44, 573–588 (2018)

    Article  MathSciNet  Google Scholar 

  5. Wei, L.: Wave breaking analysis for the Fornberg–Whitham equation. J. Differ. Equ. 265, 2886–2896 (2018)

    Article  MathSciNet  Google Scholar 

  6. Holmes, J.M.: Well-posedness of the Fornberg–Whitham equation on the circle. J. Differ. Equ. 260, 8530–8549 (2016)

    Article  MathSciNet  Google Scholar 

  7. Tian, L., Gao, Y.: The global attractor of the viscous Fornberg–Whitham equation. Nonlinear Anal. 71, 5176–5186 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ehrnström, M., Wahlén, E.: On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 36, 1603–1637 (2019)

    Article  MathSciNet  Google Scholar 

  9. Günther, H.: Discontinuous traveling waves as weak solutions to the Fornberg–Whitham equation. J. Differ. Equ. 265, 2825–2841 (2018)

    Article  MathSciNet  Google Scholar 

  10. Xu, F., Zhang, Y., Li, F.: The well-posedness, blow-up and travelling waves for a two-component Fornberg–Whitham system. J. Math. Phys. 62, 18 (2021)

    MATH  Google Scholar 

  11. Rossen, I.: On the integrability of a class of nonlinear dispersive wave equations. J. Nonlinear Math. Phys. 12, 462–468 (2005)

    Article  MathSciNet  Google Scholar 

  12. Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves of Korteweg-de Vries type. Proc. R. Soc. Lond. Ser. A 411, 395–412 (1987)

    Article  MathSciNet  Google Scholar 

  13. Chen, H., Bona, J.L.: Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations. Adv. Differ. Equ. 3, 51–84 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272, 47–78 (1972)

    Article  MathSciNet  Google Scholar 

  15. Buffoni, B.: Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173, 25–68 (2004)

    Article  MathSciNet  Google Scholar 

  16. Buffoni, B., Séré, E., Toland, J.F.: Minimization methods for quasi-linear problems with an application to periodic water waves. SIAM J. Math. Anal. 36, 1080–1094 (2005)

    Article  MathSciNet  Google Scholar 

  17. Breit, D., Wahlén, E.: A variational approach to solitary gravity-capillary interfacial waves with infinite depth. J. Nonlinear Sci. 29, 2601–2655 (2019)

    Article  MathSciNet  Google Scholar 

  18. Duchene, V., Nilsson, D., Wahlén, E.: Solitary wave solutions to a class of modified Green–Naghdi systems. J. Math. Fluid Mech. 20, 1059–1091 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  20. Bona, J.L., Li, Y.A.: Decay and analyticity of solitary waves. J. Math. Pures et Appliq. 76, 377–430 (1997)

    Article  MathSciNet  Google Scholar 

  21. Bruell, G., Ehrnström, M., Pei, L.: Symmery and decay of travelling wave solutions to the Whitham equation. J. Differ. Equ. 262, 4232–4254 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (No: 11571057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengquan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, F. & Li, F. The existence and decay of solitary waves for the Fornberg–Whitham equation. Z. Angew. Math. Phys. 72, 112 (2021). https://doi.org/10.1007/s00033-021-01547-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01547-1

Mathematics Subject Classification

Keywords

Navigation