Skip to main content
Log in

The existence, uniqueness and exponential decay of global solutions in the full quantum hydrodynamic equations for semiconductors

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the large-time behavior of the solutions in the full quantum hydrodynamic model, which can be used to analyze the thermal and quantum influences on the transport of carriers (electrons or holes) in semiconductor device. For the Cauchy problem in \({\mathbb {R}}^3\), the global existence and uniqueness of smooth solutions, when the initial data are small perturbations of an equilibrium state, are obtained. Also, the solutions tend to the corresponding equilibrium state exponentially fast as the time tends to infinity. The analysis is based on the elementary \(L^2\)-energy method, but various techniques are introduced to establish a priori estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, P., Marcati, P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)

    Article  MathSciNet  Google Scholar 

  2. Antonelli, P., Marcati, P.: The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203, 499–527 (2012)

    Article  MathSciNet  Google Scholar 

  3. Dong, J.: Mixed boundary-value problems for quantum hydrodynamic models with semiconductors in thermal equilibrium. Electron. J. Differ. Equ. 123, 1–8 (2005)

    MathSciNet  Google Scholar 

  4. Gardner, Carl L.: The quantum hydrodynamic model for semiconductors devices. SIAM J. Appl. Math. 54, 409–427 (1994)

    Article  MathSciNet  Google Scholar 

  5. Gasser, I., Markowich, P.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14, 97–116 (1997)

    Article  MathSciNet  Google Scholar 

  6. Goldfine, I.A.: Vector Analysis and Field Theory. Nauka, Moscow (1968).. ((in Russian))

    MATH  Google Scholar 

  7. Hu, H., Mei, M., Zhang, K.: Asymptotic stability and semi-classical limit for bipolar quantum hydrodynamic model. Commun. Math. Sci. 14, 2331–2371 (2016)

    Article  MathSciNet  Google Scholar 

  8. Huang, F., Li, H., Matsumura, A.: Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors. J. Differ. Equ. 225, 1–25 (2006)

    Article  MathSciNet  Google Scholar 

  9. Jia, Y., Li, H.: Large-time behavior of solutions of quantum hydrodynamic model for semiconductors. Acta Math. Sci. 26B, 163–178 (2006)

    Article  MathSciNet  Google Scholar 

  10. Jüngel, A.: A steady-state quantum Euler–Poisson system for potential flows. Commun. Math. Phys. 194, 463–479 (1998)

    Article  MathSciNet  Google Scholar 

  11. Jüngel, A.: Quasi-hydrodynamic semiconductor equations. In: Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Besel (2001)

  12. Jüngel, A., Matthes, D., Milišić, J.P.: Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67, 46–68 (2006)

    Article  MathSciNet  Google Scholar 

  13. Jüngel, A., Li, H.: Quantum Euler–Poisson systems: existence of stationary states. Arch. Math. (Brno) 40, 435–456 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Jüngel, A., Li, H.: Quantum Euler–Poisson systems: global existence and exponential decay. Quart. Appl. Math. 62, 569–600 (2004)

    Article  MathSciNet  Google Scholar 

  15. Jüngel, A., Li, H., Matsumura, A.: The relaxation-time limit in the quantum hydrodynamic equations for semiconductors. J. Differ. Equ. 225, 440–464 (2006)

    Article  MathSciNet  Google Scholar 

  16. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  Google Scholar 

  17. Kotschote, M.: Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12, 473–484 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kotschote, M.: Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J. 63, 21–51 (2014)

    Article  MathSciNet  Google Scholar 

  19. Li, F.: Quasineutral limit of the viscous quantum hydrodynamic model for semiconductors. J. Math. Anal. Appl. 352, 620–628 (2009)

    Article  MathSciNet  Google Scholar 

  20. Li, H., Marcati, P.: Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Commun. Math. Phys. 245, 215–247 (2004)

    Article  MathSciNet  Google Scholar 

  21. Li, H., Zhang, G., Zhang, K.: Algebraic time decay for the bipolar quantum hydrodynamic model. Math. Models Methods Appl. Sci. 18, 859–881 (2008)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Yong, Y.: Large time behavior of solutions to 1-dimensional bipolar quantum hydrodynamic model for semiconductors. Acta Math. Sci. 37B, 806–835 (2017)

    Article  MathSciNet  Google Scholar 

  23. Li, Y., Sun, W.: Asymptotic stability of the rarefaction wave for the compressible quantum Navier–Stokes–Poisson equation. J. Math. Anal. Appl. 453, 174–194 (2017)

    Article  MathSciNet  Google Scholar 

  24. Liang, B., Zhang, K.: Steady-state solutions and asymptotic limits on the multidimensional semiconductor quantum hydrodynamic model. Math. Models Methods Appl. Sci. 17, 253–275 (2007)

    Article  MathSciNet  Google Scholar 

  25. Mao, J., Zhou, F., Li, Y.: Some limit analysis in a one-dimensional stationary quantum hydrodynamic model for semiconductors. J. Math. Anal. Appl. 364, 186–194 (2010)

    Article  MathSciNet  Google Scholar 

  26. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990)

    Book  Google Scholar 

  27. Michele, F.. Di., Mei, M., Rubino, B., Sampalmieri, R.: Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics. J. Differ. Equ. 263, 1843–1873 (2017)

    Article  MathSciNet  Google Scholar 

  28. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  29. Nishibata, S., Sibata, N., Suzuki, M.: Asymptotic behaviors and classical limits of solutions to a quantum drift-diffusion model for semiconductors. Math. Models Methods Appl. Sci. 20, 909–936 (2010)

    Article  MathSciNet  Google Scholar 

  30. Nishibata, S., Suzuki, M.: Initial boundary value problems for a quantum hydrodynamic model of semiconductors: asymptotic behaviors and classical limits. J. Differ. Equ. 244, 836–874 (2008)

    Article  MathSciNet  Google Scholar 

  31. Pu, X., Guo, B.: Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinet. Relat. Models 9, 165–191 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pu, X., Xu, X.: Asymptotic behaviors of the full quantum hydrodynamic equations. J. Math. Anal. Appl. 454, 219–245 (2017)

    Article  MathSciNet  Google Scholar 

  33. Unterreiter, A.: The thermal equilibrium solution of a generic bipolar quantum hydrodynamic model. Commun. Math. Phys. 188, 69–88 (1997)

    Article  MathSciNet  Google Scholar 

  34. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  35. Yang, J., Li, Y.: Global existence of weak solution for quantum Navier–Stokes–Poisson equations. J. Math. Phys. 58, 071507 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhang, G., Li, H., Zhang, K.: Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors. J. Differ. Equ. 245, 1433–1453 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakho Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ra, S., Hong, H. The existence, uniqueness and exponential decay of global solutions in the full quantum hydrodynamic equations for semiconductors. Z. Angew. Math. Phys. 72, 107 (2021). https://doi.org/10.1007/s00033-021-01540-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01540-8

Keywords

Mathematics Subject Classification

Navigation