Skip to main content
Log in

General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the nonlinear viscoelastic plate equation modeling the deformation of a suspension bridge, given by

$$\begin{aligned} u_{tt}(x,y,t)+\Delta ^2 u(x,y,t) -\displaystyle \int \limits _0^{t} g(t-\tau )\Delta ^2 u(\tau )\;\hbox {d}\tau +a(x, y) \vert u_t\vert ^m u_t+\vert u\vert ^{\rho }u=0, \end{aligned}$$

in the bounded domain \(\Omega = (0, \pi )\times (-d, d)\), which is assumed to be hinged on its vertical edges and free on its remaining horizontal edges. We prove, with general conditions on the relaxation function, that the decay rate of energy is similar to that of the relaxation function regardless of the presence or the absence of the frictional damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Gwaiz, M., Benci, V., Gazzola, F.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. 106, 181–734 (2014)

    Article  MathSciNet  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  3. Bochicchio, I., Giorgi, C., Vuk, E.: On the viscoelastic coupled suspension bridge. Evol. Equ. Control Theory 3, 373–397 (2014)

    Article  MathSciNet  Google Scholar 

  4. Brownjohn, J.M.W.: Observations on non-linear dynamic characteristics of suspension bridges. Earthq. Eng. Struct. Dyn. 23, 1351–1367 (1994)

    Article  Google Scholar 

  5. Cavalcanti, M.M., Corrêa, W.J., Fukuoka, R., Hajjej, Z.: Stabilization of a suspension bridge with locally distributed damping. Math. Control Signals Syst. 30(4), 39 (2018)

    Article  MathSciNet  Google Scholar 

  6. Cavalcanti, A.D.D., Cavalcanti, M., Corrêa, W.J., et al.: Uniform decay rates for a suspension bridge with locally distributed nonlinear damping. J. Frankl. Inst. 357, 2388–2419 (2020)

    Article  MathSciNet  Google Scholar 

  7. Ferrero, A., Gazzola, F.: A partially hinged rectangular plate as a model for suspension bridges. Discrete Contin. Dyn. Syst. A 35, 5879–5908 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gazzola, F.: Nonlinearity in oscillating bridges. Electron. J. Differ. Equ. 211, 47 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Gazzola, F.: Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, Modeling, Simulation and Applications, vol. 15. Springer, Berlin (2015)

    Book  Google Scholar 

  10. Glover, J., Lazer, A.C., Mckenna, P.J.: Existence and stability of large scale nonlinear oscillation in suspension bridges. Z. Angew. Math. Phys. 40, 172–200 (1989)

    Article  MathSciNet  Google Scholar 

  11. Lacarbonara, W.: Nonlinear Structural Mechanics. Springer, Berlin (2013)

    Book  Google Scholar 

  12. Marie-Therese Lacroix-Sonrier: Distrubutions Espace de Sobolev Application. Ellipses/Edition Marketing SA (1998)

  13. Lions, J.L.: Quelques methodes de resolution des problemes aux limites non lineaires, 2nd edn. Dunod, Paris (2002)

    MATH  Google Scholar 

  14. Liu, W., Zhuang, H.: Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms. Nonlinear Differ. Equ. Appl. 24, 67 (2017). https://doi.org/10.1007/s00030-017-0491-5

    Article  MathSciNet  MATH  Google Scholar 

  15. McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98(2), 167–177 (1987)

    Article  MathSciNet  Google Scholar 

  16. Messaoudi, S.A., Bonfoh, A., Mukiawa, S.E., Enyi, C.D.: The global attractor for a suspension bridge with memory and partially hinged boundary conditions. Z. Angew. Math. Mech. 97, 1–14 (2016)

    Google Scholar 

  17. Messaoudi, S.A., Mukiawa, S.E., Cyril, E.D.: Finite dimensional global attractor for a suspension bridge problem with delay. C. R. Math. Acad. Sci. Paris Ser. I 354(8), 808–824 (2016)

    Article  MathSciNet  Google Scholar 

  18. Messaoudi, S.A., Mukiawa, S.E.: Existence and decay of solutions to a viscoelastic plate equations. Electron. J. Differ. Equ. 2016(22), 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Messaoudi, S.A., Mukiawa, S.E.: A Suspension Bridge Problem: Existence and Stability, Mathematics Across Contemporary Sciences (2017)

  20. Messaoudi, S.A., Mukiawa, S.E.: Existence and stability of fourth-order nonlinear plate problem. Nonauton. Dyn. Syst. 6, 81–98 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mukiawa, S.E.: Decay result for a delay viscoelastic plate equation. Bull. Braz. Math. Soc. New Ser. 122, 122 (2019). https://doi.org/10.1007/s00574-019-00155-y

    Article  Google Scholar 

  22. Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. (2017). https://doi.org/10.1002/mma.4604

    Article  Google Scholar 

  23. Plaut, R.H., Davis, F.M.: Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges. J. Sound Vib. 307, 894–905 (2007)

    Article  Google Scholar 

  24. Scott, R.: In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability. ASCE Press, Reston (2001)

    Book  Google Scholar 

  25. Wang, Y.: Finite time blow-up and global solutions for fourth order damped wave equations. J. Math. Anal. Appl. 418(2), 713–733 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks enormously the professor Salim A. Messaoudi for his suggestions and his help during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zayd Hajjej.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjej, Z. General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term. Z. Angew. Math. Phys. 72, 90 (2021). https://doi.org/10.1007/s00033-021-01526-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01526-6

Keywords

Mathematics Subject Classification

Navigation