Skip to main content
Log in

A study on the Gurtin–Murdoch model for spherical solids with surface tension

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

An investigation is made on the Gurtin–Murdoch (GM) model for soft spherical elastic solids with surface tension-induced bulk residual stress. Unlike the original GM model which treats the surface tension as a finite value but the surface tension-induced bulk residual stress as infinitesimal, the present model treats both consistently as finite values. Detailed comparisons between the present model and the GM model show that for a solid sphere (for which the surface tension-induced bulk residual stress remains uniform in the entire body), the GM model deviates considerably from the present model. Conversely, for a small cavity in an infinite body (for which the surface tension-induced bulk residual stress is significant only nearby the cavity’s surface but quickly diminishes with radial distance), the deviation between the present model and the original GM model is negligible. It is concluded that the surface tension-induced bulk residual stress, which is addressed in the present paper but ignored in the GM model, can have a significant effect on deformation and vibration of soft elastic solids when its magnitude does not vanishingly diminish within the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  2. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  MATH  Google Scholar 

  3. Ru, C.Q.: A strain-consistent elastic plate model with surface elasticity. Contin. Mech. Thermodyn. 28, 263–273 (2016). https://doi.org/10.1007/s00161-015-0422-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976). https://doi.org/10.1063/1.89173

    Article  Google Scholar 

  5. Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. (2007). https://doi.org/10.1103/PhysRevLett.99.206102

    Article  Google Scholar 

  6. Karabalin, R.B., Villanueva, L.G., Matheny, M.H., Sader, J.E., Roukes, M.L.: Stress-induced variations in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett. 108, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.108.236101

    Article  Google Scholar 

  7. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010). https://doi.org/10.1016/j.ijengsci.2009.07.007

    Article  Google Scholar 

  8. Yue, Y.M., Ru, C.Q., Xu, K.Y.: Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. Int. J. Non. Linear. Mech. 88, 67–73 (2017). https://doi.org/10.1016/j.ijnonlinmec.2016.10.013

    Article  Google Scholar 

  9. Yue, Y.M., Xu, K.Y., Tan, Z.Q., Wang, W.J., Wang, D.: The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate. Arch. Appl. Mech. 89, 1301–1315 (2019). https://doi.org/10.1007/s00419-018-01504-x

    Article  Google Scholar 

  10. Mogilevskaya, S.G., Kushch, V.I., Zemlyanova, A.Y.: Displacements representations for the problems with spherical and circular material surfaces. Q. J. Mech. Appl. Math. 72, 449–471 (2019). https://doi.org/10.1093/qjmam/hbz013

    Article  MathSciNet  Google Scholar 

  11. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003). https://doi.org/10.1063/1.1539929

    Article  Google Scholar 

  12. Long, J.M., Qin, X., Wang, G.F.: Influence of surface energy on the elastic compression of nanosphere. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4907689

    Article  Google Scholar 

  13. Liang, L., Ma, H., Wei, Y.: Size-dependent elastic modulus and vibration frequency of nanocrystals. J. Nanomater. 2011, 1–6 (2011). https://doi.org/10.1155/2011/670857

    Article  Google Scholar 

  14. Wang, J., Gao, Y., Ng, M.-Y., Chang, Y.-C.: Radial vibration of ultra-small nanoparticles with surface effects. J. Phys. Chem. Solids 85, 287–292 (2015). https://doi.org/10.1016/j.jpcs.2015.06.005

    Article  Google Scholar 

  15. Dai, M., Schiavone, P.: Deformation-induced change in the geometry of a general material surface and its relation to the Gurtin–Murdoch model. J. Appl. Mech. (2020). https://doi.org/10.1115/1.4046635

    Article  Google Scholar 

  16. Zemlyanova, A.Y., Mogilevskaya, S.G.: On spherical inhomogeneity with Steigmann–Ogden interface. J. Appl. Mech. 85, 1–10 (2018). https://doi.org/10.1115/1.4041499

    Article  Google Scholar 

  17. Yang, F.: Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, 3516–3520 (2004). https://doi.org/10.1063/1.1664030

    Article  Google Scholar 

  18. Li, Z.R., Lim, C.W., He, L.H.: Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress. Eur. J. Mech. A Solids. 25, 260–270 (2006). https://doi.org/10.1016/j.euromechsol.2005.09.005

    Article  MATH  Google Scholar 

  19. Kushch, V.I., Shmegera, S.V., Mykhas’kiv, V.V.: Multiple spheroidal cavities with surface stress as a model of nanoporous solid. Int. J. Solids Struct. 152–153, 261–271 (2018). https://doi.org/10.1016/j.ijsolstr.2018.07.001

    Article  Google Scholar 

  20. Huang, G.Y., Liu, J.P.: Effect of surface stress and surface mass on elastic vibrations of nanoparticles. Acta Mech. 224, 985–994 (2013). https://doi.org/10.1007/s00707-012-0803-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X., Schiavone, P.: A nanosized circular inhomogeneity in finite plane elastostatics. Zeitschrift fur Angew. Math. und Phys. 66, 2871–2879 (2015). https://doi.org/10.1007/s00033-015-0528-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Mishra, S., Lacy, T.E., Kundu, S.: Effect of surface tension and geometry on cavitation in soft solids. Int. J. Non. Linear. Mech. 98, 23–31 (2018). https://doi.org/10.1016/j.ijnonlinmec.2017.10.001

    Article  Google Scholar 

  23. Shao, X., Saylor, J.R., Bostwick, J.B.: Extracting the surface tension of soft gels from elastocapillary wave behavior. Soft Matter 14, 7347–7353 (2018). https://doi.org/10.1039/c8sm01027g

    Article  Google Scholar 

  24. Wang, L.: Axisymmetric instability of soft elastic tubes under axial load and surface tension. Int. J. Solids Struct. 191–192, 341–350 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.015

    Article  Google Scholar 

  25. Wang, S., Dai, M., Ru, C.Q., Gao, C.-F.: Surface tension-induced interfacial stresses around a nanoscale inclusion of arbitrary shape. Zeitschrift für Angew. Math. und Phys. 68, 127 (2017). https://doi.org/10.1007/s00033-017-0876-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. Astron. 53, 536–544 (2010). https://doi.org/10.1007/s11433-010-0144-8

    Article  Google Scholar 

  27. Nemat-Nasser, S.: On local stability of a finitely deformed solid subjected to follower type loads. Q. Appl. Math. 26, 119–129 (1968). https://doi.org/10.1090/qam/99863

    Article  MATH  Google Scholar 

  28. Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5, 229–241 (1957). https://doi.org/10.1016/0022-5096(57)90016-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Bazânt, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971). https://doi.org/10.1115/1.3408976

    Article  MATH  Google Scholar 

  30. Chippada, U., Yurke, B., Langrana, N.A.: Simultaneous determination of Young’s modulus, shear modulus, and Poisson’s ratio of soft hydrogels. J. Mater. Res. 25, 545–555 (2010). https://doi.org/10.1557/jmr.2010.0067

    Article  Google Scholar 

  31. Khan, M.Y., Samanta, A., Ojha, K., Mandal, A.: Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties. Asia-Pacific J. Chem. Eng. 3, 579–585 (2008). https://doi.org/10.1002/apj.212

    Article  Google Scholar 

  32. Long, J., Wang, G., Feng, X.-Q., Yu, S.: Effects of surface tension on the adhesive contact between a hard sphere and a soft substrate. Int. J. Solids Struct. 84, 133–138 (2016). https://doi.org/10.1016/j.ijsolstr.2016.01.021

    Article  Google Scholar 

  33. Ghosh, A.K., Agrawal, M.K.: Radial Vibrations of Spheres. J. Sound Vib. 171, 315–322 (1994). https://doi.org/10.1006/jsvi.1994.1123

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Yang thanks the support of the China Scholarship Council, and Gao acknowledges the support of the National Natural Science Foundation of China (No.11872203), Joint Fund of Advanced Aerospace Manufacturing Technology Research (U1937601), National Natural Science Foundation of China for Creative Research Groups (No. 51921003). Ru thanks the support of Natural Science and Engineering Research Council of Canada (NSERC-RGPIN204992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Q. Ru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Gao, CF. & Ru, C.Q. A study on the Gurtin–Murdoch model for spherical solids with surface tension. Z. Angew. Math. Phys. 72, 95 (2021). https://doi.org/10.1007/s00033-021-01502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01502-0

Keywords

Mathematics Subject Classification

Navigation