Existence of periodic solutions for p-Laplacian equation without growth restrictions

Abstract

In this paper, we deal with the nonlinear fully second-order differential equation with p-Laplacian

$$\begin{aligned} (\phi _p(x'))'=f(t,x,x'),\quad t\in \mathbb {R}:=(-\infty ,\infty ), \end{aligned}$$

where \(\phi _p(s)=|s|^{p-2}s\), \(p>1\), function \(f:\mathbb {R}^3 \rightarrow \mathbb {R}\) is continuous and T-periodic with respect to t. Using the topological transversality method and the barrier strip technique, we obtain new existence results of periodic solutions to the above p-Laplacian equation without growth restrictions. Meanwhile, an application is given for the Rayleigh-type p-Laplacian equation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Agarwal, R.P., O’Regan, D., Staněk, S.: Neumann boundary value problems with singularities in a phase variable. Aequationes Math. 69, 293–308 (2005)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bereanu, C., Mawhin, J.: Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and \(\phi \)-Laplacian. Nonlinear Differ. Equ. Appl. 15, 159–168 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bereanu, C., Mawhin, J.: Periodic solutions of nonlinear perturbations of \(\phi \)-Laplacians with possibly bounded \(\phi \). Nonlinear Anal. 68, 1668–1681 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cabada, A., Pouso, R.: Existence result for the problem \((\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })\) with periodic and Neumann boundary conditions. Nonlinear Anal. 30, 1733–1742 (1997)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cheung, W.S., Ren, J.: Periodic solutions for \(p\)-Laplacian Rayleigh equations. Nonlinear Anal. 65, 2003–2012 (2006)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Dai, G., Ma, R., Wang, H.: Eigenvalues, bifurcation and one-sign solutions for the periodic \(p\)-Laplacian. Commun. Pure Appl. Anal. 12, 2839–2872 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gao, F., Lu, S.: New results on the existence and uniqueness of periodic solutions for Liénard type \(p\)-Laplacian equation. J. Franklin Inst. 345, 374–381 (2008)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Granas, A., Guenther, R.B., Lee, J.W.: Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Math. (Rozprawy Mat.) 244, Warsaw (1985)

  9. 9.

    Herrero, M.A., Vazquez, J.L.: On the propagation properties of a nonlinear degenerate parabolic equation. Commun. Part. Differ. Equ. 7, 1381–1402 (1982)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kelevedjiev, P.: Existence of solutions for two-point boundary value problems. Nonlinear Anal. 22, 217–224 (1994)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Liu, B.: Existence and uniqueness of periodic solutions for a kind of Liénard type \(p\)-Laplacian equation. Nonlinear Anal. 69, 724–729 (2008)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lü, H., O’Regan, D., Zhong, C.: Multiple positive solutions for the one-dimensional singular \(p\)-Laplacian. Appl. Math. Comput. 133, 407–422 (2002)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with \(p\)-Laplacian-like operators. J. Differ. Equ. 145, 367–393 (1998)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Pei, M., Wang, L., Lv, X.: Radial solutions for \(p\)-Laplacian Neumann problems with gradient dependence (submitted)

  15. 15.

    Tang, M.-L., Liu, X.-G.: Periodic solutions for a kind of Duffing type \(p\)-Laplacian equation. Nonlinear Anal. 71, 1870–1875 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Torres, P.J.: Nondegeneracy of the periodically forced Liénard differential equation with \(\phi \)-Laplacian. Commun. Contemp. Math. 13, 283–292 (2011)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Wang, Y.: Novel existence and uniqueness criteria for periodic solutions of a Duffing type \(p\)-Laplacian equation. Appl. Math. Lett. 23, 436–439 (2010)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang, Y., Ge, W.: Existence of periodic solutions for nonlinear differential equations with a \(p\)-Laplacian-like operator. Appl. Math. Lett. 19, 251–259 (2006)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Zhang, F., Li, Y.: Existence and uniqueness of periodic solutions for a kind of Duffing type \(p\)-Laplacian equation. Nonlinear Anal. Real World Appl. 9, 985–989 (2008)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Zhang, Y., Pei, M.: Existence of periodic solutions for nonlinear fully third-order differential equations. J. Funct. Spaces 2020, 6793721 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for valuable suggestions, which led to improvement of the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Libo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Project-sponsored by the Education Department of JiLin Province of China (JJKH20200029KJ)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, M., Wang, L. Existence of periodic solutions for p-Laplacian equation without growth restrictions. Z. Angew. Math. Phys. 72, 53 (2021). https://doi.org/10.1007/s00033-021-01486-x

Download citation

Keywords

  • p-Laplacian equation
  • Periodic solution
  • Topological transversality
  • Barrier strip

Mathematics Subject Classification

  • 34B15
  • 34C25