Green’s functions and integral representation of generalized continua: the case of orthogonal pantographic lattices

Abstract

This paper shows how the classical representation techniques for the solution of elasticity problems, based on the Green’s functions, can be generalized to second-gradient continua focusing on the specific case of pantographic lattices. As these last are strongly anisotropic, the fundamental solutions of isotropic second-gradient continua involving bi-Helmholtz-type operators are not applicable. More specifically we establish the analytical fundamental solution for the linearized equations governing the equilibrium of pantographic 2D continua in the neighbourhood of the reference configuration. Moreover, by means of found novel Green’s functions, it is shown that it is possible to solve aforesaid equilibrium equations by using Fredholm integral equations. It is seen that an approximated analytical solution for the standard bias test for pantographic 2D continua can be found by using judiciously the found analytical fundamental solutions. The micro-macro-asymptotic identification allows for a clear and satisfactory physical interpretation of the obtained analytical results.

This is a preview of subscription content, access via your institution.

Notes

1. 1.

Since $$g_x (x,y)$$ is odd on x and even on y, $$G_x (x,y)$$ is even on both x and y so that $$G_x(x,y)= G_x(|x|,|y|)$$. Thus, it is sufficient to focus on the case where consider x and y positive. In that case, setting $$a^2 = \frac{y^2}{4\eta u}$$ one has,

\begin{aligned} \int ^{L}_{x}\frac{\exp (\frac{-y^2}{4\eta u})}{\sqrt{4\pi \eta u}}\mathrm {d}u = \frac{-y}{4\eta \sqrt{\pi }}\int ^{\frac{y }{\sqrt{4\eta L}}}_{\frac{y }{\sqrt{4\eta x}}} \frac{\exp (-a^2) }{a^2} \mathrm {d}a = \frac{-y}{4\eta \sqrt{\pi }} \bigg \{\left[ \frac{ -\exp (-a^2) }{a}\right] ^{\frac{y }{\sqrt{4\eta L}}}_{\frac{y }{\sqrt{4\eta x}}} -2\int ^{\frac{y }{\sqrt{4\eta L}}}_{\frac{y }{\sqrt{4\eta x}}} \exp (-a^2) \mathrm {d}a)\bigg \} \end{aligned}

Then taking $$L = 0$$, one obtains the following expression when $$x>0$$ and $$y>0$$:

\begin{aligned}&G_x (x,y) = \frac{-y}{4\eta \sqrt{\pi }} \bigg \{ \frac{ \exp ((\frac{y }{\sqrt{4\eta x}})^2) }{\frac{y }{\sqrt{4\eta x}}} -2\int _{\frac{y }{\sqrt{4\eta x}}}{+\infty } \exp (-a^2) \mathrm {d}a)\bigg \} \\&\quad = - \sqrt{\frac{x}{ 4\pi \eta } }\exp (\frac{-y^2}{4\eta x})+ \frac{y}{4\eta }\bigg (1-\frac{2}{\sqrt{\pi }}\int ^{\frac{y }{\sqrt{4\eta x}}}_{0} \exp (-a^2) \mathrm {d}a \bigg ) \end{aligned}

References

1. 1.

De Angelo, M., Barchies, E., Giorgio, I., Abali, B.E.: Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling. Arch. Appl. Mech. 89(7), 1333–1358 (2019)

2. 2.

Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2019)

3. 3.

Barchiesi, E., Eugster, S.R., Dell’isola, F., Hild, F.: Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation. Math. Mech. Solids 25(3), 739–767 (2020)

4. 4.

Barchiesi, E., Harsch, J., Ganzosch, G., Eugster, S.R.: Discrete versus homogenized continuum modeling in finite deformation bias extension test of bi-pantographic fabrics. Continuum Mech. Thermodyn. 1–14, (2020)

5. 5.

Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–1051 (1996)

6. 6.

Boutin, C., Soubestre, J.: Generalized inner bending continua for linear fiber reinforced materials. Int. J. Solids Struct. 48(3), 517–534 (2011)

7. 7.

Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017). https://doi.org/10.2140/memocs.2017.5.127

8. 8.

Boutin, C.: Homogenization methods and generalized continua in linear elasticity. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2019). https://doi.org/10.1007/978

9. 9.

Brebbia, C.A., Walker, S.: Boundary Element Techniques in Engineering. Newnes, Butterworths (1980)

10. 10.

Tollenaere, H., Caillerie, D.: Continuous modeling of lattice structures by homogenization. Adv. Eng. Softw. 29(7–9), 699–705 (1998)

11. 11.

Carslaw, H.S., Jaeger, J.C.: Conduction Heat in Solids. Oxford University Press, Oxford (1978)

12. 12.

Courant, R., Hilbert, D.: Methods of Mathematical Physics: Partial Differential Equations. Wiley, Hoboken (2008)

13. 13.

Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018). https://doi.org/10.1007/s10659-017-9660-3

14. 14.

Eremeyev, V.A., Turco, E.: Enriched buckling for beam-lattice metamaterials. Mech. Res. Commun. 103, 103458 (2020)

15. 15.

Eremeyev, V.A., Ganghoffer, J.F., Konopińska-Zmysłowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103213 (2020)

16. 16.

Gazzo, S., Cuomo, M., Boutin, C., Contrafatto, L.: Directional properties of fibre network materials evaluated by means of discrete homogenization. Eur. J. Mech. A. Solids 8(2), 1–19 (2020)

17. 17.

Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2207), 20170636 (2017)

18. 18.

Giorgio, I., Ciallella, A., Scerrato, D.: A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int. J. Solids Struct. 203, 73–83 (2020)

19. 19.

Green, A.E.: A note on stresses systems in aeolotropic materials. Philos. Mag. 34, 416–418 (1943)

20. 20.

Hans, S., Boutin, C.: Dynamics of discrete framed structures: an unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709–1739 (2008)

21. 21.

dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solid 20(8), 887–928 (2015)

22. 22.

dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 1(118), 113–125 (2015)

23. 23.

dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Golaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Della, A., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.F., Muller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Hild, F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4), 851–884 (2019)

24. 24.

dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., Eugster, S.R., Pfaff, A., Hoschke, K., Langkemper, R., Turco, E., Sarikaya, R., Misra, A., De Angelo, M., D’Annibale, F., Bouterf, A., Pinelli, X., Misra, A., Desmorat, B., Pawlikowski, M., Dupuy, C., Scerrato, D., Peyre, P., Laudato, M., Manzari, L., Göransson, P., Hesch, C., Hesch, S., Franciosi, P., Dirrenberger, J., Maurin, F., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M., Muller, W., Abali, Bilen E., Diebold, C., Ganzosch, G., Harrison, P., Drobnicki, R., Igumnov, L., Alzahrani, F., Hayat, T.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31(4), 1231–1282 (2019)

25. 25.

Germain, P.: La méthode des puissances virtuelles en mécanique des milieux con-tinus, I: Théorie du second gradient. J. Mécanique 12(2), 235–274 (1973)

26. 26.

Kachanov, M., Shafiro, B., Tsukrov, I.: Handbook of Elasticity Solutions. Kluwer Academic Publisher, Amsterdam (2003)

27. 27.

Lazar, M., Maugin, G.A., Aifantis, E.C.: On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)

28. 28.

Michelitsch, T., Levin, V.M.: Green’s functions for the infinite two-dimensional orthotropic medium. Int. J. Fracture 1(107), 33–38 (2000)

29. 29.

Roddier, F.: Distributions et Transformation de Fourier. Ediscience Paris, Berlin (1971)

30. 30.

Sanchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)

31. 31.

Spagnuolo, M., Yildizdag, M.E., Andreaus, U., Cazzani, A.M.: Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math. Mech. Solids (2020). https://doi.org/10.1177/1081286520937339

32. 32.

Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

Author information

Authors

Corresponding author

Correspondence to Boutin Claude.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

Claude, B., Francesco, d. Green’s functions and integral representation of generalized continua: the case of orthogonal pantographic lattices. Z. Angew. Math. Phys. 72, 58 (2021). https://doi.org/10.1007/s00033-021-01480-3

• Revised:

• Accepted:

• Published:

Keywords

• Green’s functions
• Integral equation
• Anisotropy
• Pantographic lattices

• 41A21
• 45B05
• 74A60
• 74B99
• 74E10
• 74G05
• 74K99
• 74Q05
• 74Q15
• 74S15