Pointwise space–time estimates of non-isentropic compressible micropolar fluids

Abstract

For the non-isentropic compressible micropolar fluids in three dimensions, we show that the space–time behaviors of the fluid density, momentum and energy contain both generalized Huygens’ wave and diffusion wave as the non-isentropic compressible Navier–Stokes equation, while it only contains the diffusion wave for the micro-rational velocity. All of the previous estimates containing Huygens’ waves for wave behaviors of compressible flow models rely heavily on the conservative structure, for instance, the isentropic and non-isentropic Navier–Stokes equations. In this paper, after using the decomposition of fluid and electromagnetic parts to study three smaller Green’s matrices, we find that one of them is like a non-isentropic Navier–Stokes equation, but its energy is not conservative anymore due to the presence of the micro-rational velocity. We overcome this difficulty by providing a refined estimate for this Green’s matrix. Another difficulty is in proving the pointwise estimate of the micro-rational velocity only contains the diffusion wave, although its nonlinear terms contain both the Huygens’ wave and the diffusion wave. It is solved by using the relation of these two waves and developing new nonlinear estimates. Our pointwise estimate directly yields \(L^p\)-estimate with \(p>1\), which is a generalization of the usual \(L^2\)-estimate.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Chen, M.T., Xu, X.Y., Zhang, J.W.: Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum. Commun. Math. Sci. 13, 225–247 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chen, M.T., Huang, B., Zhang, J.W.: Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum. Nonlinear Anal. 79, 1–11 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cui, H.B., Yin, H.Y.: Stability of the composite wave for the inflow problem on the micropolar fluid model. Commun. Pure Appl. Anal. 16(4), 1265–1292 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cui, H.B., Yin, H.Y.: Stationary solutions to the one-dimensional micropolar fluid model in a half line: existence, stability and convergence rate. J. Math. Anal. Appl. 449(1), 464–489 (2017)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Deng, S.J., Yu, S.H.: Greens function and pointwise convergence for compressible Navier–Stokes equations. Q. Appl. Math. 75(3), 433–503 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Draz̆ić, I., Mujaković, N., C̆rnjariĆ-Z̆ic, N.: Three-dimensional compressible viscous micropolar fluid with cylindrical symmetry: derivation of the model and a numerical solution. Math. Compute. Simul. 140, 107–124 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Draz̆ić, I.: Three-dimensional flow of a compressible viscous micropolar fluid with cylindrical symmetry: a global existence theorem. Math. Meth. Appl. Sci. (2017). https://doi.org/10.1002/mma.4344

    MathSciNet  Article  Google Scholar 

  8. 8.

    Draz̆ić I., Mujaković, N.: 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution. J. Math. Anal. Appl. 431, 545–568 (2015)

  9. 9.

    Du, L.L., Wu, Z.G.: Solving the non-isentropic Navier–Stokes equations in odd space dimensions: the green function method. J. Math. Phys. 58(10), 101506 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates for the compressible Navier–Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Duan, R.J., Liu, H.X., Ukai, S., Yang, T.: Optimal \(L^p-L^q\) convergence rates for the compressible Navier–Stokes equations with potential force. J. Differ. Equ. 238, 220–233 (2007)

    Article  Google Scholar 

  12. 12.

    Duan, R..J.: Global smooth flows for the compressible Euler–Maxwell system. The relaxation case. J. Hyperbolic Differ. Equ. 8, 375–413 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Duan, R.J.: Green’s function and large time behavior of the Navier–Stokes–Maxwell system. Anal. Appl. (Singap.) 10, 133–197 (2012)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Duan, R.J., Liu, Q.Q., Zhu, C.J.: Darcy’s law and diffusion for a two-fluid Euler–Maxwell system with dissipation. Math. Models Methods Appl. Sci. 25, 2089–2151 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  16. 16.

    Hoff, D., Zumbrun, K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44(2), 603–676 (1995)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hoff, D., Zumbrun, K.: Pointwise decay estimates for multidimensional Navier–Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Huang, B., Liu, L., Zhang, L.: Global dynamics of 3d compressible micropolar fluids with vacuum and large oscillations. Preprint

  19. 19.

    Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(\mathbb{R}^3\). Commun. Math. Phys. 200, 621–659 (1999)

    Article  Google Scholar 

  20. 20.

    Li, D.L.: The Green’s function of the Navier–Stokes equations for gas dynamics in \(\mathbb{R}^3\). Commun. Math. Phys. 257, 579–619 (2005)

    Article  Google Scholar 

  21. 21.

    Liu, L.Q., Zhang, L.: Optimal decay to the non-isentropic compressible micropolar fluids. Commun. Pure Appl. Anal. 19(9), 4575–4598 (2020)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Liu, Q.Q., Zhang, P.: Optimal time decay of the compressible micropolar fluids. J. Differ. Equ. 260(10), 7634–7661 (2016)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Liu, Q.Q., Yin, H.Y.: Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model. Nonlinear Anal. Theory Methods Appl. 149, 41–55 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Liu, Q.Q., Zhang, P.: Long-time behavior of solution to the compressible micropolar fluids with external force. Nonlinear Anal. Real World Appl. 40, 361–376 (2018)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Liu, T.P., Noh, S.E.: Wave propagation for the compressible Navier–Stokes equations. J. Hyperbolic Differ. Equ. 12, 385–445 (2015)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Liu, T.P., Wang, W.K.: The pointwise estimates of diffusion wave for the Navier–Stokes systems in odd multi-dimension. Commun. Math. Phys. 196, 145–173 (1998)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Liu, T.P., Zeng, Y.N.: Large Time Behavior of Solutions for General Quasilinear Hyperbolic-Parabolic Systems of Conservation Laws. Amer. Math. Soc., Providence (1997)

    Book  Google Scholar 

  28. 28.

    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution. Rad. Mat. 10(2), 181–193 (2001)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Mujaković, N.: Global in time estimates for one-dimensional compressible viscous micropolar fluid model. Glas. Mat. Ser. III 40(1), 103–120 (2005)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: the Cauchy problem. Math. Commun. 10(1), 1–14 (2005)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a local existence theorem. Ann. Univ. Ferrara Sez. VII Sci. Mat. 53(2), 361–379 (2007)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Mujaković, N.: 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: uniqueness of a generalized solution. Bound. Value Probl. 2014, 226 (2014)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Wang, W.K., Wu, Z.G.: Pointwise estimates of solution for the Navier–Stokes-Poisson equations in multi-dimensions. J. Differ. Equ. 248, 1617–1636 (2010)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wang, W.K., Yang, T.: The pointwise estimates of solutions for Euler equations with damping in multi-dimensions. J. Differ. Equ. 173, 410–450 (2001)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Wei, R., Guo, B., Li, Y.: Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations. J. Differ. Equ. 263(5), 2457–2480 (2017)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Wu, Z.G., Wang, W.K.: Pointwise estimates of solution for non-isentropic Navier–Stokes–Poisson equations in multi-dimensions. Acta Math. Sci. 32B(5), 1681–1702 (2012)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Wu, Z.G., Wang, W.K.: Pointwise estimates for bipolar compressible Navier–Stokes–Poisson system in dimension three. Arch. Rational Mech. Anal. 226(2), 587–638 (2017)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Wu, Z.G., Wang, W.K.: The pointwise estimates of diffusion wave of the compressible micropolar fluids. J. Differ. Equ. 265(6), 2544–2576 (2018)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Wu, Z.G., Li, Y.P.: Pointwise estimates of solutions for the multi-dimensional bipolar Euler–Poisson system. Z. Angew. Math. Phys. 67(3), 50 (2016)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Yin, H.Y.: Stability of stationary solutions for inflow problem on the micropolar fluid model. Z. Angew. Math. Phys. 68(2), 44 (2017)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Zeng, Y.N.: \(L^1\) asymptotic behavior of compressible isentropic viscous 1-D flow. Commun. Pure Appl. Math. 47, 1053–1082 (1994)

    Article  Google Scholar 

Download references

Funding

The research was supported by National Natural Science Foundation of China (No. 11971100) and the Fundamental Research Funds for the Central Universities (No. 2232019D3-43).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

      The first lemma is used to derive H-wave for the Green’s function \(G^1(x,t)\) in Sect. 2.

Lemma 3.1

[25, 26] Let \(\mathbf {w}(x, t)\) be the inverse Fourier transform of \(\sin c|\xi |t/(c|\xi |)\), then

$$\begin{aligned} \begin{array}{rl} |\mathbf {w}*(1+t)^{-\frac{l}{2}}\mathrm{e}^{-\frac{|x|^2}{1+t}}| &{} \le C(1+t)^ {-\frac{l}{2}}\mathrm{e}^{-\frac{(|x|-ct)^2}{1+t}},\\ |\mathbf {w}_t*(1+t)^{-\frac{l}{2}}\mathrm{e}^{-\frac{|x|^2}{1+t}}|&{} \le C(1+t)^ {-\frac{l+2}{2}}\mathrm{e}^{-\frac{(|x|-ct)^2}{1+t}},\ l\ge 0. \end{array} \end{aligned}$$

We also need the following lemma when describing the singular part of the short wave:

Lemma 3.2

(Wang and Yang [36]) If \(\mathrm{supp}\hat{f}(\xi )\subset O_K=:{\{\xi , |\xi |\ge K>0\}}\), and \(\hat{f}(\xi )\) satisfies

$$\begin{aligned} |D_\xi ^\beta \hat{f}(\xi )|\le C|\xi |^{-|\beta |-1}, \end{aligned}$$

then there exist distributions \(f_1(x), f_2(x)\) and a constant \(C_0\) such that \(f(x)=f_1(x)+f_{2}(x)+C_{0}\delta (x)\), where \(\delta (x)\) is the Dirac function. Furthermore, for any \(|\alpha |\ge 0\) and any positive integer N, we have

$$\begin{aligned} |D_x^\alpha f_1(x)|\le C(1+|x|^2)^{-N},\ \Vert f_{2}\Vert _{L^1}\le C,\ \mathrm{supp}f_{2}(x)\subset \{x;|x|<\eta _0\ll 1\}. \end{aligned}$$

The last two lemmas are used for initial propagation and nonlinear coupling, respectively. We just state several typical cases here.

Lemma 3.3

(Wu and Wang [39]) There exists a constant \(C>0\) such that:

$$\begin{aligned} \begin{array}{ll} \displaystyle \int \limits _{\mathbb R^3}\mathrm{e}^{-\frac{|x-y|^2}{C(1+t)}}\big (1+|y|^2\big )^{-r}\mathrm{d}y \le C\Big (1+\frac{|x|^2}{1+t}\Big )^{-r},\ \ \mathrm{for}\ r>\frac{3}{2},\\ \displaystyle \int \limits _{\mathbb R^3}\mathrm{e}^{-\frac{(|x-y|-ct)^2}{C(1+t)}}\big (1+|y|^2\big )^ {-r_1}\mathrm{d}y\le C\Big (1+\frac{(|x|-ct)^2}{1+t}\Big )^{-\frac{3}{2}},\ \ \mathrm{for}\ r_1>\frac{21}{10}. \end{array} \end{aligned}$$
(3.25)

Lemma 3.4

(Liu and Noh [25]) There exists a constant \(C>0\) such that

$$\begin{aligned} \begin{array}{ll} \displaystyle K_1=\int \limits _0^t\int \limits _{\mathbb {R}^3}(1+t-s)^{-2}\Big (1+\frac{|x-y|^2}{1+t-s}\Big )^ {-2}(1+s)^{-3}\Big (1+\frac{|y|^2}{1+s}\Big )^{-3}\mathrm{d}y\mathrm{d}s\\ \ \ \ \ \le C(1+t)^{-2}\big (1+\frac{|x|^2}{1+t}\big )^{-\frac{3}{2}},\\ \displaystyle K_2=\int \limits _0^t\int \limits _{\mathbb {R}^3}(1+t-s)^{-2}\Big (1+\frac{|x-y|^2}{1+t-s}\Big )^ {-2}(1+s)^{-4}\Big (1+\frac{(|y|-cs)^2}{1+s}\Big )^{-3}\mathrm{d}y\mathrm{d}s\\ \ \ \ \ \le C(1+t)^{-2}\Big (\big (1+\frac{|x|^2}{1+t}\big )^{-\frac{3}{2}}+\big (1+ \frac{(|x|-ct)^2}{1+t}\big )^{-\frac{3}{2}}\Big ),\\ K_3=\displaystyle \int \limits _{0}^{t}\int \limits _{\mathbb {R}^3}(1+t-s)^{-\frac{5}{2}}\mathrm{e}^{- \frac{(|x-y|-c(t-s))^2}{C(1+t-s)}}(1+s)^{-4}\Big (1+\frac{(|y|-cs)^2}{1+s}\Big )^{-3}\mathrm{d}y\mathrm{d}s\\ \ \ \ \ \le C(1+t)^{-2}\Big (\big (1+\frac{|x|^2}{1+t}\big )^{-\frac{3}{2}}+\big (1+ \frac{(|x|-ct)^2}{1+t}\big )^{-\frac{3}{2}}\Big ). \end{array} \end{aligned}$$

The estimate \(K_3\) is key to derive the generalized Huygens’ principle for the previous results on the conservative system such as the isentropic Navier–Stokes equations mentioned in the Introduction, since the extra \((1+t)^{-\frac{1}{2}}\) decay rate in the former term of the convolution (3.25) is from the conservative structure. In our situation, the energy is non-conservative; we have to find out this extra decay rate from the Green’s function. Fortunately, we get it and then realize that the model (1.1) is naturally perfect from the perspective of deducing the generalized Huygens’ principle here.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Jiang, X. Pointwise space–time estimates of non-isentropic compressible micropolar fluids. Z. Angew. Math. Phys. 72, 85 (2021). https://doi.org/10.1007/s00033-021-01468-z

Download citation

Keywords

  • Green’s function
  • Micropolar fluids
  • Huygens’ principle
  • Nonconservative

Mathematics Subject Classification

  • 35A09
  • 35B40
  • 35J08
  • 35Q35