Skip to main content
Log in

On a fully parabolic chemotaxis system with source term and periodic asymptotic behavior

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study a parabolic–parabolic chemotactic PDE’s system which describes the evolution of a biological population “u” and a chemical substance “v” in a two-dimensional bounded domain with regular boundary. We consider a growth term of logistic type in the equation of “u” in the form \(u (1-u+f(x,t))\), for a given bounded function “f” which tends to a periodic in time function independent of x when t goes to infinity. We study the global existence of solutions and its asymptotic behavior for a range of parameters and initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D.: An application of the invariance principle to reaction–diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

    Article  MathSciNet  Google Scholar 

  2. Amann, H.: Dynamic theory of quasilinear parabolic equations. II. Reaction–diffusion systems. Differ. Integral Equ. 3, 13–5 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998)

    Article  Google Scholar 

  4. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65(2), 553–583 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dunn, G.A., Zicha, D.: Long-term chemotaxis of neutrophils in stable gradients: preliminary evidence of periodic behavior. Blood Cells 19, 25–41 (1993)

    Google Scholar 

  7. Friedman, A., Tello, J.I.: Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. Appl. 272, 138–163 (2002)

    Article  MathSciNet  Google Scholar 

  8. Galakhov, E., Salieva, O., Tello, J.I.: On a parabolic–elliptic system with chemotaxis and logistic type growth. J. Differ. Equ. 261(8), 4631–4647 (2015)

    Article  MathSciNet  Google Scholar 

  9. Hai Yang, J., Xiang, T.: Chemotaxis effect vs logistic damping on boundedness in the 2-D minimal Keller–Segel model. C. R. Acad. Sci. Paris Ser. I 356, 875–885 (2018)

    Article  MathSciNet  Google Scholar 

  10. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Horstmann, D.: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21, 231–270 (2011)

    Article  MathSciNet  Google Scholar 

  12. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  13. Issa, T.B., Shen, W.: Dynamics in chemotaxis models of parabolic–elliptic type on bounded domain with time and space dependent logistic sources. SIAM J. Appl. Dyn. Syst. 16(2), 926–973 (2017)

    Article  MathSciNet  Google Scholar 

  14. Kang, K., Stevens, A.: Blowup and global solutions in a chemotaxis growth system. Nonlinear Anal. TMA 135, 57–72 (2016)

    Article  MathSciNet  Google Scholar 

  15. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  16. Keller, E.F., Segel, L.A.: A model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  Google Scholar 

  17. Lankeit, J.: Chemotaxis can prevent thresholds on population density. Discrete Contin. Dyn. Syst. Ser. B 20(5), 1499–1527 (2015)

    Article  MathSciNet  Google Scholar 

  18. Nakaguchi, E., Osaki, K.: Global existence of solutions to an \(n\)-dimensional parabolic–parabolic system for chemotaxis with logistic-type growth and superlinear production. Osaka J. Math. 55(1), 51–70 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Negreanu, M., Tello, J.I.: On a two species chemotaxis model with slow chemical diffusion. SIAM J. Math. Anal. 46(6), 3761–3781 (2014)

    Article  MathSciNet  Google Scholar 

  20. Negreanu, M., Tello, J.I.: Global existence and asymptotic behavior of solutions to a predator–prey chemotaxis system with two chemicals. J. Math. Anal. Appl. 474(2), 1116–1131 (2019)

    Article  MathSciNet  Google Scholar 

  21. Negreanu, M., Tello, J.I.: Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant. J. Differ. Equ. 258, 1592–1617 (2015)

    Article  MathSciNet  Google Scholar 

  22. Negreanu, M., Tello, J.I.: On a parabolic–elliptic chemotactic system with non-constant chemotactic sensitivity. Nonlinear Anal. 80, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  23. Negreanu, M., Tello, J.I.: On a comparison method to reaction diffusion systems and applications. Discrete Contin. Dyn. Syst. Ser. B 18(10), 2669–2688 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Negreanu, M., Tello, J.I., Vargas, A.M.: On a parabolic–elliptic chemotaxis system with periodic asymptotic behavior. Math. Methods Appl. Sci. 42(4), 1210–1226 (2018)

    Article  MathSciNet  Google Scholar 

  25. Osaki, K., Tsujikawa, T., Yagia, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  26. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15(3), 311–338 (1953)

    Article  MathSciNet  Google Scholar 

  27. Steinbock, O., Hashimoto, H., Müller, S.C.: Quantitative analysis of periodic chemotaxis in aggregation patterns of Dictyostelium discoideum. Physica D 49, 233–239 (1991)

    Article  Google Scholar 

  28. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46(3), 1969–2007 (2014)

    Article  MathSciNet  Google Scholar 

  29. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with sub critical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  Google Scholar 

  30. Tao, Y., Winkler, M.: Persistence of mass in a chemotaxis system with logistic source. J. Differ. Equ. 259, 6142–6161 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    Article  MathSciNet  Google Scholar 

  32. Tu, X., Qiu, S.: Finite-time blow-up and global boundedness for chemotaxis system with strong logistic dampening. J. Math. Anal. Appl. 486(1), 123876 (2020)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35(8), 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24, 809–855 (2014)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. (2018). https://doi.org/10.1007/s00033-018-0935-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Zusman, D.R., Scott, A.E., Yang, Z., Kirby, J.R.: Chemosensory pathways, motility and development in Myxococcus xanthus. Nat. Rev. Microbiol. 5(11), 862–872 (2007)

    Article  Google Scholar 

  38. Xiang, T.: Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source. J. Differ. Equ. 258, 4275–4323 (2018)

    Article  MathSciNet  Google Scholar 

  39. Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller–Segel chemotaxis system. J. Math. Phys. (2018). https://doi.org/10.1063/1.5018861

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project MTM2017-83391-P from MICINN (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Tello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negreanu, M., Tello, J.I. & Vargas, A.M. On a fully parabolic chemotaxis system with source term and periodic asymptotic behavior. Z. Angew. Math. Phys. 71, 65 (2020). https://doi.org/10.1007/s00033-020-1282-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1282-0

Mathematics Subject Classification

Keywords

Navigation