Skip to main content
Log in

Delta shocks and vacuum states in the Euler equations for nonisentropic magnetogasdynamics with the flux perturbation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the formation of delta shocks and vacuum states in Riemann solutions to nonisentropic magnetogasdynamics with the flux perturbation as the pressure, magnetic field and flux perturbation all vanish. First, the Riemann problem of this model is solved. Second, it is rigorously shown that, as the pressure, magnetic field and flux perturbation vanish, any Riemann solution consisting of two shocks and a possible one-contact-discontinuity to nonisentropic magnetogasdynamics with the flux perturbation tends to a delta shock solution to the transport equations, and the intermediate density between the two shocks tends to a weighted \(\delta \)-measure which forms the delta shock wave; any Riemann solution consisting of two rarefaction waves and a possible one-contact-discontinuity tends to a two-contact-discontinuity solution to the transport equations, and the nonvacuum intermediate state between the two rarefaction waves tends to a vacuum state. Finally, some numerical results are presented to verify the formation of delta shocks and vacuum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang, T., Hsiao, L.: The Riemann Problem and Interaction of Waves in Gas Dynamics. Longman, Essex (1989)

    MATH  Google Scholar 

  2. Chen, G., Wang, D.: The Cauchy problem for the Euler equations for compressible fluids. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 421–543. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  3. Smith, R.: The Riemann problem in gas dynamics. Trans. Am. Math. Soc. 249, 1–50 (1979)

    Article  MathSciNet  Google Scholar 

  4. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, New York (1983)

    Book  Google Scholar 

  5. Danilov, V.G., Shelkovich, V.M.: Dynamics of propagation and interaction of \(\delta \)-shock waves in conservation law systems. J. Differ. Equ. 221, 333–381 (2005)

    Article  MathSciNet  Google Scholar 

  6. Kalisch, H., Mitrovic, D.: Singular solutions of a fully nonlinear \(2\times 2\) system of conservation laws. Proc. Edinb. Math. Soc. 55(3), 711–729 (2012)

    Article  MathSciNet  Google Scholar 

  7. LeFloch, P.: An existence and uniqueness result for two nonstrictly hyperbolic systems. In: Keyfitz, B.L., Shearer, M. (eds.) Nonlinear Evolution Equations that Change Type. IMA Volumes in Mathematics and Its Applications, vol. 27. Springer, Berlin (1990)

    Google Scholar 

  8. Keyfitz, B.L., Kranzer, H.C.: A viscosity approximation to a system of conservation laws with no classical Riemann solution. In: Nonlinear Hyperbolic Problems. Lecture Notes in Mathematics, vol. 1402, pp. 185–197 (1989)

  9. Tan, D., Zhang, T., Zheng, Y.: Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differ. Equ. 112, 1–32 (1994)

    Article  MathSciNet  Google Scholar 

  10. Yang, H.: Riemann problems for a class of coupled hyperbolic systems of conservation laws. J. Differ. Equ. 159, 447–484 (1999)

    Article  MathSciNet  Google Scholar 

  11. Yang, H., Zhang, Y.: New developments of delta shock waves and its applications in systems of conservation laws. J. Differ. Equ. 252, 5951–5993 (2012)

    Article  MathSciNet  Google Scholar 

  12. Chen, G., Liu, H.: Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 189, 141–165 (2004)

    Article  MathSciNet  Google Scholar 

  13. Agarwal, R.K., Halt, D.W.: A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows. In: Caughey, D.A., Hafez, M.M. (eds.) Frontiers of Computational Fluid Dynamics, pp. 155–163. Wiley, New York (1994)

    Google Scholar 

  14. Bouchut, F.: On zero pressure gas dynamics. In: Bouchut, F. (ed.) Advances in Kinetic Theory and Computing. Series on Advances in Mathematics for Applied Sciences, vol. 22, pp. 171–190. World Scientific Publishing, River Edge (1994)

    Google Scholar 

  15. Li, Y., Cao, Y.: Second order large particle difference method. Sci. China Ser. A 8, 1024–1035 (1985)

    MATH  Google Scholar 

  16. Lions, P.L., Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-system. Commun. Math. Phys. 163, 415–431 (1994)

    Article  MathSciNet  Google Scholar 

  17. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35, 2317–2328 (1998)

    Article  MathSciNet  Google Scholar 

  18. Weinan, E., Rykov, YuG, Sinai, YaG: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177, 349–380 (1996)

    Article  MathSciNet  Google Scholar 

  19. Shandarin, S.F., Zeldovich, YuB: The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185–220 (1989)

    Article  MathSciNet  Google Scholar 

  20. Huang, F., Wang, Z.: Well-posedness for pressureless flow. Commun. Math. Phys. 222, 117–146 (2001)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Yang, H.: Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics. Q. Appl. Math. 59, 315–342 (2001)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Zhang, T.: Generalized Rankine–Hugoniot relations of delta-shocks in solutions of transport equations. In: Chen, G.-Q., et al. (eds.) Advanced in Nonlinear Partial Differential Equations and Related Areas (Beijing, 1997), pp. 219–232. World Science Publishing, River Edge (1998)

    Chapter  Google Scholar 

  23. Li, J., Zhang, T.: On the initial-value problem for zero-pressure gas dynamics. In: Hyperbolic Problems: Theory, Numerics, Applications, vol. 2 (Zürich, 1998), pp. 629–640. Birkhäuser, Basel (1999)

  24. Poupaud, F., Rascle, M.: Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Commun. Partial Differ. Equ. 22, 337–358 (1997)

    Article  MathSciNet  Google Scholar 

  25. Sheng, W., Zhang, T.: The Riemann problem for the transport equations in gas dynamics. Memoirs of the American Mathematical Society, vol. 137, no. 654. American Mathematical Society, Providence (1999)

  26. Yang, H.: Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics. J. Math. Anal. Appl. 260, 18–35 (2001)

    Article  MathSciNet  Google Scholar 

  27. Yang, H., Liu, J.: Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation. Sci. China Math. 58(11), 2329–2346 (2015)

    Article  MathSciNet  Google Scholar 

  28. Yang, H., Liu, J.: Concentration and cavitation in the Euler equations for nonisentropic fluids with the flux approximation. Nonlinear Anal. TMA 123–124, 158–177 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Chen, G., Liu, H.: Formation of \(\delta \)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34, 925–938 (2003)

    Article  MathSciNet  Google Scholar 

  30. Li, J.: Note on the compressible Euler equations with zero temperature. Appl. Math. Lett. 14, 519–523 (2001)

    Article  MathSciNet  Google Scholar 

  31. Shen, C., Sun, M.: Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Aw-Rascle model. J. Differ. Equ. 249, 3024–3051 (2010)

    Article  MathSciNet  Google Scholar 

  32. Yang, H., Wang, J.: Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas. J. Math. Anal. Appl. 413, 800–820 (2014)

    Article  MathSciNet  Google Scholar 

  33. Yang, H., Wang, J.: Concentration in vanishing pressure limit of solutions to the modified Chaplygin gas equations. J. Math. Phys. 57(11), 17–21 (2016)

    Article  MathSciNet  Google Scholar 

  34. Yin, G., Sheng, W.: Delta wave formation and vacuum state in vanishing pressure limit for system of conservation laws to relativistic fluid dynamics. Z. Angew. Math. Mech. 95(1), 49–65 (2015)

    Article  MathSciNet  Google Scholar 

  35. Yang, H., Zhang, Y.: Flux approximation to the isentropic relativistic Euler equations. Nonlinear Anal. TMA 133, 200–227 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, J., Yang, H.: Vanishing pressure and magnetic field limit of solutions to the nonisentropic magnetogasdynamics. Z. Angew. Math. Mech. 98(8), 1472–1492 (2018)

    Article  MathSciNet  Google Scholar 

  37. Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations Lecture Notes in Mathematics 1697, 325–432 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Science and Technology Foundation of Hebei Education Department [Grant Number QN2018307] and the Natural Science Foundation of Hebei Province [Grant Number A2019105110].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Delta shocks and vacuum states in the Euler equations for nonisentropic magnetogasdynamics with the flux perturbation. Z. Angew. Math. Phys. 71, 60 (2020). https://doi.org/10.1007/s00033-020-1278-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1278-9

Keywords

Mathematics Subject Classification

Navigation