Skip to main content
Log in

Conversion efficiency and effective properties of particulate-reinforced thermoelectric composites

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

It is well known that nanoparticles have the ability to enhance the performance of thermoelectric materials. A comprehensive analytical model exploring the mechanism by which this enhancement takes place remains largely absent from the literature. We address this deficiency by introducing a simple model of a nanoparticle as a circular nanoinhomogeneity and analyze its effect on thermal–electric conversion efficiency and the effective properties of thermoelectric composites. Taking interface phonon scattering into consideration, the effective material parameters around a nanoinhomogeneity are derived explicitly, while the effective properties and optimal conversion efficiency are discussed in detail via numerical analysis. Our results show that the nanoinhomogeneity equally effects both the figure of merit and the conversion efficiency. A carefully selected inhomogeneity not only improves the thermoelectric power factor but also suppresses the effective thermal conductivity, and thus greatly improves the optimal conversion efficiency. Specifically, a nanoinhomogeneity with higher electric and thermal conductivities generates a higher thermoelectric figure of merit regardless of the magnitude of its Seebeck coefficient. Noting that the thermoelectric performance improved by the presence of the inhomogeneity is restricted by the intensity of interface phonon scattering, we further calculate the expressions for the effective figure of merit in certain extreme cases. Furthermore, we see that a smaller inhomogeneity has a stronger ability to improve the conversion efficiency for a given doping proportion, mainly because the interface phonon scattering of the smaller inhomogeneity has a relatively greater effect on thermal conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899

    Article  Google Scholar 

  2. Tritt, T.M., Böttner, H., Chen, L.: Thermoelectrics: direct solar thermal energy conversion. MRS Bull. 33, 366–368 (2008). https://doi.org/10.1557/mrs2008.73

    Article  Google Scholar 

  3. Nolas, G.S., Morelli, D.T., Tritt, T.M.: Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89–116 (1999). https://doi.org/10.1146/annurev.matsci.29.1.89

    Article  Google Scholar 

  4. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727

    Article  Google Scholar 

  5. Brown, S.R., Kauzlarich, S.M., Gascoin, F., Snyder, G.J.: \(\text{ Yb }_{14}~\text{ MnSb }_{{11}}\): new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006). https://doi.org/10.1021/cm060261t

    Article  Google Scholar 

  6. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001). https://doi.org/10.1038/35098012

    Article  Google Scholar 

  7. Polvani, D.A., Meng, J.F., Chandra Shekar, N.V., Sharp, J., Badding, J.V.: Large improvement in thermoelectric properties in pressure-tuned p-type \(\text{ Sb }_{1.5}\text{ Bi }_{0.5}\text{ Te }_{3}\). Chem. Mater. 13, 2068–2071 (2001). https://doi.org/10.1021/cm000888q

    Article  Google Scholar 

  8. Liu, W., Yan, X., Chen, G., Ren, Z.: Recent advances in thermoelectric nanocomposites. Nano Energy 1, 42–56 (2012). https://doi.org/10.1016/j.nanoen.2011.10.001

    Article  Google Scholar 

  9. Cook, B.A., Kramer, M.J., Harringa, J.L., Han, M.K., Chung, D.Y., Kanatzidis, M.G.: Analysis of nanostructuring in high figure-of-merit \(\text{ Ag }_{1-x}\text{ Pb }_{m}\text{ SbTe }_{2+_{m}}\) thermoelectric materials. Adv. Funct. Mater. 19, 1254–1259 (2009). https://doi.org/10.1002/adfm.200801284

    Article  Google Scholar 

  10. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2011). https://doi.org/10.1038/nmat2090

    Article  Google Scholar 

  11. Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J.: Nanostructured thermoelectric materials: current research and future challenge. Prog. Natl. Sci. Mater. Int. 22, 535–549 (2012). https://doi.org/10.1016/j.pnsc.2012.11.011

    Article  Google Scholar 

  12. Snyder, G.J., Ursell, T.S.: Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003). https://doi.org/10.1103/PhysRevLett.91.148301

    Article  Google Scholar 

  13. Yang, Y., Ma, F.Y., Lei, C.H., Liu, Y.Y., Li, J.Y.: Is thermoelectric conversion efficiency of a composite bounded by its constituents? Appl. Phys. Lett. 102, 053905 (2013). https://doi.org/10.1063/1.4791684

    Article  Google Scholar 

  14. Song, K., Song, H.P., Gao, C.F.: Macro-performance of multilayered thermoelectric medium. Chin. Phys. B 26, 127307 (2017). https://doi.org/10.1088/1674-1056/26/12/127307

    Article  Google Scholar 

  15. Song, K., Song, H.P., Li, M., Schiavone, P., Gao, C.F.: Effective properties of a thermoelectric composite containing an elliptic inhomogeneity. Int. J. Heat Mass Transf. 135, 1319–1326 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.088

    Article  Google Scholar 

  16. Swartz, E.T., Pohl, R.O.: Thermal resistance at interfaces. Appl. Phys. Lett. 51, 2200–2202 (1987). https://doi.org/10.1063/1.98939

    Article  Google Scholar 

  17. Callen, H.B.: Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, New York (1960)

    MATH  Google Scholar 

  18. Yang, Y., Lei, C., Gao, C.F., Li, J.: Asymptotic homogenization of three-dimensional thermoelectric composites. J. Mech. Phys. Solids 76, 98–126 (2015). https://doi.org/10.1016/j.jmps.2014.12.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, K., Song, H.P., Gao, C.F.: Improving compatibility between thermoelectric components through current refraction. Chin. Phys. B 27, 077304 (2018). https://doi.org/10.1088/1674-1056/27/7/077304

    Article  Google Scholar 

  20. Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H.W., Folkman, C.M., Zhuravlev, M.Y., Felker, D., Rzchowski, M., Eom, C.B., Tsymbal, E.Y.: Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009). https://doi.org/10.1021/nl901754t

    Article  Google Scholar 

  21. Lehwald, S., Szeftel, J.M., Ibach, H., Rahman, T.S., Mills, D.L.: Surface phonon dispersion of Ni (100) measured by inelastic electron scattering. Phys. Rev. Lett. 50, 518–521 (1983). https://doi.org/10.1103/PhysRevLett.50.518

    Article  Google Scholar 

  22. Meyerhof, W.E.: Contact potential difference in silicon crystal rectifiers. Phys. Rev. 71, 727–735 (1947). https://doi.org/10.1103/PhysRev.71.727

    Article  Google Scholar 

  23. Song, K., Schiavone, P.: Thermal conduction around a circular nanoinhomogeneity. Int. J. Heat Mass Transf. 150, 119297 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119297

    Article  Google Scholar 

  24. Song, K., Song, H.P., Gao, C.F.: Unavoidable electric current caused by inhomogeneities and its influence on measured material parameters of thermoelectric materials. J. Appl. Phys. 123, 124105 (2018). https://doi.org/10.1063/1.5011778

    Article  Google Scholar 

  25. Yang, Y., Xie, S.H., Ma, F.Y., Li, J.Y.: On the effective thermoelectric properties of layered heterogeneous medium. J. Appl. Phys. 111, 013510 (2012). https://doi.org/10.1063/1.3674279

    Article  Google Scholar 

  26. Harman, T.C., Honig, J.M.: Thermoelectric and Thermomagnetic Effects and Applications. McGraw-Hill, New York (1967)

    Google Scholar 

  27. Sumithra, S., Takas, N.J., Misra, D.K., Nolting, W.M., Poudeu, P.F.P., Stokes, K.L.: Enhancement in thermoelectric figure of merit in nanostructured Bi\(_{2}\)Te\(_{3}\) with semimetal nanoinclusions. Adv. Energy Mater. 1, 1141–1147 (2011). https://doi.org/10.1002/aenm.201100338

    Article  Google Scholar 

  28. Alam, H., Ramakrishna, S.: A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2, 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005

    Article  Google Scholar 

Download references

Acknowledgements

Song appreciates the support of the National Natural Science Foundation of China (Grant No. 11902116). Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for their support through a Discovery Grant (Grant # RGPIN 155112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schiavone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Yin, D. & Schiavone, P. Conversion efficiency and effective properties of particulate-reinforced thermoelectric composites. Z. Angew. Math. Phys. 71, 54 (2020). https://doi.org/10.1007/s00033-020-1275-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1275-z

Keywords

Mathematics Subject Classification

Navigation