Skip to main content
Log in

Lifespan, asymptotic behavior and ground-state solutions to a nonlocal parabolic equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider a nonlocal parabolic equation, which was studied in Liu and Ma (Nonlinear Anal 110:141–156, 2014), Li and Liu (J Math Phys 58:101503, 2017). By exploiting the boundary condition and the variational structure of the equation, we obtain the lifespan for the blow-up solutions, decay estimation and asymptotic behavior for the global solutions and ground-state solutions for the stationary solutions. The results generalize the former studies on this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, A.G., Song, X.F.: Bounds for the blowup time of the solutions to quasi-linear parabolic problems. Z. Angew. Math. Phys. 65, 115–123 (2014)

    Article  MathSciNet  Google Scholar 

  2. Badiale, M., Serra, E.: Semilinear elliptic equations for beginners-existence results via the variational approach. In: Axler, S., Capasso, V., Casacuberta, C., Macintyre, A.J., Ribet, K., Sabbah, C., Süli, E., Woyczynski, W. (eds.) Universitext. Springer, London (2011)

    Google Scholar 

  3. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Book  Google Scholar 

  4. Gourley, S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41(3), 272–284 (2000)

    Article  MathSciNet  Google Scholar 

  5. Lacey, A.A.: Thermal runaway in a non-local problem modelling Ohmic beating: part 1. Model derivation and some special cases. Eur. J. Appl. 6(2), 127–144 (1995)

    Article  Google Scholar 

  6. Levine, H.A.: Instability and nonexistence of global solutions of nonlinear wave equation of the form \(Pu_{tt} = Au + F(u)\). Trans. Am. Math. Soc. 192, 1–21 (1974)

    MATH  Google Scholar 

  7. Liu, B.Y., Ma, L.: Invariant sets and the blow up threshold for a nonlocal equation of parabolic type. Nonlinear Anal. 110, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  8. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (1977)

    Google Scholar 

  9. Li, X.L., Liu, B.Y.: Vacuum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation. J. Math. Phys. 58, 101503 (2017)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y., Luo, S., Ye, Y.: Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput. Math. Appl. 65, 1194–1199 (2013)

    Article  MathSciNet  Google Scholar 

  11. Liu, Y.: Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition. Comput. Math. Appl. 66, 2092–2095 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ni, W.M., Sacks, P.E., Tavantzis, J.: On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differ. Equ. 54, 97–120 (1984)

    Article  MathSciNet  Google Scholar 

  13. Ou, C., Wu, J.: Persistence of wavefronts in delayed nonlocal reaction–diffusion equations. J. Differ. Equ. 235(1), 219–261 (2007)

    Article  MathSciNet  Google Scholar 

  14. Payne, L.E., Schaefer, P.W.: Bounds for blow-up time for the heat equation under nonlinear boundary conditions. Proc. R. Soc. Edinb. 139A, 1289–1296 (2009)

    Article  MathSciNet  Google Scholar 

  15. Payne, L.E., Philippin, G.A.: Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions. Proc. Am. Math. Soc. 141(7), 2309–2318 (2013)

    Article  MathSciNet  Google Scholar 

  16. Quittner, P., Souplet, P.: Superlinear Parabolic Problems: Blow-Up, Gobal Existence and Steady States. Birkhäuser Advanced Texts, Basler Lehrbücher. Springer, Basel (2007)

    MATH  Google Scholar 

  17. So, J.W.H., Wu, J.H., Zou, X.F.: A reaction–diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains. Proc. Lond. Math. Soc. A 457, 1841–1853 (2012)

    Article  MathSciNet  Google Scholar 

  18. Song, J.C.: Lower bounds for the blow-up time in a non-local reaction–diffusion problem. Appl. Math. Lett. 24, 793–796 (2014)

    Article  MathSciNet  Google Scholar 

  19. Xu, G.Y., Zhou, J.: Lifespan for a semilinear pseudo-parabolic equation. Math. Methods Appl. Sci. 41(2), 705–713 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Zhou, J.: Lower bounds for blow-up time of two nonlinear wave equations. Appl. Math. Lett. 45, 64–68 (2015)

    Article  MathSciNet  Google Scholar 

  21. Zhou, J.: Blow-up and lifespan of solutions to a nonlocal parabolic equation at arbitrary initial energy level. Appl. Math. Lett. 78, 118–125 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research has been supported by NSFC Grant 11201380 and Basic and Advanced Research Project of CQC-STC Grant cstc2016jcyjA0018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J. Lifespan, asymptotic behavior and ground-state solutions to a nonlocal parabolic equation. Z. Angew. Math. Phys. 71, 28 (2020). https://doi.org/10.1007/s00033-020-1251-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1251-7

Keywords

Mathematics Subject Classification

Navigation