Skip to main content
Log in

Boundedness in a three-dimensional two-species chemotaxis system with two chemicals

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with a two-species chemotaxis system with Lotka–Volterra competitive kinetics

$$\begin{aligned} \left\{ \begin{array}{llll} u_t=\Delta u-\chi _1\nabla \cdot (u\nabla v)+\mu _1u(1-u-a_1w),&{}\quad x\in \Omega ,\quad t>0,\\ v_t=\Delta v-v+w,&{}\quad x\in \Omega ,\quad t>0,\\ w_t=\Delta w-\chi _2\nabla \cdot (w\nabla z)+\mu _2w(1-w-a_2u),&{}\quad x\in \Omega ,\quad t>0,\\ z_t=\Delta z-z+u,&{}\quad x\in \Omega ,\quad t>0, \end{array} \right. \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^3\) is a bounded domain with smooth boundary \(\partial \Omega \); the parameters \(\chi _i,\,\,\mu _i\,\,\text {and}\,\,a_i\) \((i = 1,2)\) are positive, and the nonnegative initial data \((u_{0}, v_{0},w_{0}, z_{0})\in C^{0}({\overline{\Omega }})\times W^{1,\infty }(\Omega )\times C^{0}({\overline{\Omega }})\times W^{1, \infty }(\Omega )\). It is shown that the system possesses a unique global bounded classical solution provided that \(\mu _i (i=1,2)\) are sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Haroske, D., Runst, T., Schmeisser, H.-J. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9–126. Springer, Berlin (1993)

    MATH  Google Scholar 

  2. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Black, T.: Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete Contin. Dyn. Syst. Ser. B. 22, 1253–1272 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Black, T., Lankeit, J., Mizukami, M.: On the weakly competitive case in a two-species chemotaxis model. IMA J. Appl. Math. 81, 860–876 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B. 24, 4665–4684 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Eisenbach, M.: Chemotaxis. Imperial College Press, London (2004)

    Google Scholar 

  8. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  11. Lin, K., Mu, C.: Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete Contin. Dyn. Syst. Ser. B. 22, 2233–2260 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Lin, K., Mu, C.: Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 36, 5025–5046 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Lin, K., Mu, C., Wang, L.: Boundedness in a two-species chemotaxis system. Math. Methods Appl. Sci. 38, 5085–5096 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst. Ser. B. 22, 2301–2319 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Mizukami, M.: Boundedness and stabilization in a two-species chemotaxis-competiton system of parabolic-parabolic-elliptic type. Math. Methods Appl. Sci. 41, 234–249 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Mizukami, M.: Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst. Ser. S. 13, 269-278 (2020)

    MathSciNet  Google Scholar 

  17. Mizukami, M., Yokota, T.: Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion. J. Differ. Equ. 261, 2650–2669 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Murray, J.D.: Mathematical Biology. Springer, Berlin (1993)

    MATH  Google Scholar 

  19. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. Ser. Int. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Nakaguchi, E., Osaki, K.: Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete Contin. Dyn. Syst. Ser. B. 18, 2627–2646 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Negreanu, M., Tello, J.I.: Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant. J. Differ. Equ. 258, 1592–1617 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Osaki, K., Yagi, A.: Global existence for a chemotaxis-growth system in \(R^2\). Adv. Math. Sci. Appl. 12, 587–606 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Painter, K.J.: Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bull. Math. Biol. 71, 1117–1147 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Qiu, S., Mu, C., Wang, L.: Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production. Comput. Math. Appl. 75, 3213–3223 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Tao, Y., Winkler, M.: Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B. 20, 3165–3183 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Tu, X., Mu, C., Zheng, P., Lin, K.: Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete Contin. Dyn. Syst. 38, 3617–3636 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Wang, L.: Improvement of conditions for boundedness in a two-species chemotaxis competition system of parabolic–parabolic–elliptic type. J. Math. Anal. Appl. (2019). https://doi.org/10.1016/j.jmaa.2019.123705

    Article  Google Scholar 

  35. Wang, L., Mu, C., Hu, X., Zheng, P.: Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 264, 3369–3401 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Wang, L., Zhang, J., Mu, C., Hu, X.: Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. B. 25, 191-221 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Wang, W.: A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source. J. Math. Anal. Appl. 477, 488–522 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Xie, L.: On a fully parabolic chemotaxis system with nonlinear signal secretion. Nonlinear Anal. Real World Appl. 49, 24–44 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Xie, L., Wang, Y.: Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B. 22, 2717–2729 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Xie, L., Wang, Y.: On a fully parabolic chemotaxis system with Lotka–Volterra competitive kinetics. J. Math. Anal. Appl. 471, 584–598 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Yu, H., Wang, W., Zheng, S.: Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals. Nonlinearity 31, 502–514 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Q.: Competitive exclusion for a two-species chemotaxis system with two chemicals. Appl. Math. Lett. 83, 27–32 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, Q., Li, Y.: Global boundedness of solutions to a two-species chemotaxis system. Z. Angew. Math. Phys. 66, 83–93 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, Q., Liu, X., Yang, X.: Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals. J. Math. Phys. 58, 111504 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Zheng, P., Mu, C.: Global boundedness in a two-competing-species chemotaxis system with two chemicals. Acta Appl. Math. 148, 157–177 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zheng, P., Mu, C., Mi, Y.: Global stability in a two-competing-species chemotaxis system with two chemicals. Differ. Integral Equ. 31, 547–558 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for his/her positive and useful comments, which helped him improve further the exposition of the paper. This work is supported by the National Natural Science Foundation of China (No. 11601052) and Chongqing Basic Science and Advanced Technology Research Program (Nos. cstc2017jcyjAX0178 and cstc2017jcyjXB0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Wang, L., Zhang, J. et al. Boundedness in a three-dimensional two-species chemotaxis system with two chemicals. Z. Angew. Math. Phys. 71, 26 (2020). https://doi.org/10.1007/s00033-020-1248-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1248-2

Mathematics Subject Classification

Keywords

Navigation